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Abstract

Parameter extraction of photovoltaic (PV) models is crucial for the planning, optimization, and control of PV systems.
Although some methods using meta-heuristic algorithms have been proposed to determine these parameters, the robust-
ness of solutions obtained by these methods faces great challenges when the complexity of the PV model increases. The
unstable results will affect the reliable operation and maintenance strategies of PV systems. In response to this challenge,
an improved rime optimization algorithm with enhanced exploration and exploitation, termed TERIME, is proposed for
robust and accurate parameter identification for various PV models. Specifically, the differential evolution mutation opera-
tor is integrated in the exploration phase to enhance the population diversity. Meanwhile, a new exploitation strategy incor-
porating randomization and neighborhood strategies simultaneously is developed to maintain the balance of exploitation
width and depth. The TERIME algorithm is applied to estimate the optimal parameters of the single diode model, double
diode model, and triple diode model combined with the Lambert-W function for three PV cell and module types includ-
ing RTC France, Photo Watt-PWP 201 and S75. According to the statistical analysis in 100 runs, the proposed algorithm
achieves more accurate and robust parameter estimations than other techniques to various PV models in varying environ-
mental conditions. All of our source codes are publicly available at https://github.com/dirgel/TERIME.

Keywords Photovoltaic modeling - RIME algorithm - Optimization problems - Meta-heuristic algorithms - Stability

Abbreviations PV Photovoltaic

CLRao-1 Comprehensive learning Rao-1 RMSE Root mean square error

DDM Double diode model SD Standard deviation

DE Differential evolution SDM Single diode model

DO Dandelion optimizer SLCRIME Sobol local cross RIME

ECM Equivalent circuit model SRIME Strengthened RIME

IAE Individual absolute error TDM Triple diode model

MRIME Modified RIME TERIME Enhanced exploration and exploitation RIME
NGO Northern Goshawk optimization
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PV models is crucial for planning, optimizing, and control-
ling PV systems across various usage scenarios. However,
developing physical models based on PV power generation
mechanisms is challenging, since the relationship between
the current and voltage of PV is implicit and nonlinear. In
contrast, the Equivalent Circuit Model (ECM) simplifies the
working mechanism of PV into electrical elements which
are easier to analyze and understand [6]. Besides, ECMs are
capable of adapting to various PV technologies and configu-
rations, allowing for a wide range of applications in practi-
cal applications.

Typically, the primary ECMs employed for modeling
the performance of PV systems are the Single Diode Model
(SDM) [7], the Double Diode Model (DDM) [8], and the
Triple Diode Model (TDM) [9]. The choice among these
models is primarily determined by a balance between sim-
plicity and accuracy. While the SDM is favored for its sim-
plicity and ease of implementation, the DDM and TDM
offer more detailed analysis, particularly valuable under
low irradiance conditions [10]. Despite the effectiveness of
ECMs in modeling PV systems, these models rely on param-
eters that are often unavailable in manufacturers’ datasheets
and vary significantly with environmental conditions [11].
Consequently, there has been a growing interest in accurate
and robust parameter identification of PV models in varying
environmental conditions.

In the literature, methods for estimating parameters
in PV models can be generally divided into three catego-
ries: analytical methods [12], numerical methods [13], and
meta-heuristic methods [14]. Analytical methods derive
the analytical expressions for the unknown parameters by
using three significant points from the manufacturers’ data-
sheet: open circuit voltage, short circuit current, and maxi-
mum power point. However, recent findings indicate that
the limited data available in the datasheet is inadequate to
uniquely identify all the unknown parameters [15]. There-
fore, researchers seek to extract parameters from the mea-
sured current-voltage curve (I-V curve) of the PV system
to ensure the model accuracy [16]. Numerical methods,
which employ the iterative method (e.g., Newton-Raphson
approach) to extract parameters from the I-V curve, can
theoretically determine PV parameters given sufficient data.
Nevertheless, numerical methods often get stuck in local
minima near the initial estimate, hindering the attainment
of a global optimum [17]. Fortunately, meta-heuristic meth-
ods have shown excellent performance in extracting PV
parameters, without the assumptions and initial estimates
required by analytical and numerical methods. Therefore,
many meta-heuristic algorithms have been utilized for PV
parameter identification [18-20].

Although extensive research has been conducted on
extracting PV parameters using meta-heuristic methods,
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accurate and reliable evaluation of these parameters remains
challenging. As the complexity of the PV model increases,
the robustness of meta-heuristic algorithms may degrade,
greatly increasing computational costs [21]. Thus, the
development of suitable meta-heuristic algorithms remains
an open research question. In fact, the performance of meta-
heuristic algorithms is highly dependent on the dual pro-
cesses of exploration and exploitation [22]. Exploration
is characterized by the investigation of completely new
regions in a search space, whereas exploitation refers to vis-
iting regions close to previously visited points [23]. RIME
(rime optimization) is one of the latest meta-heuristic algo-
rithms proposed by Su et al. [24] in 2023. It has shown robust
exploration and exploitation capabilities compared to vari-
ous basic meta-heuristic algorithms in multiple real-world
problems. With its intuitive structure and no requirement
for hyper-parameter tuning, it has garnered considerable
attention and has already achieved good performance and
robustness in various applications [25-27], including PV
parameter extraction [28].

However, recent studies indicated that the RIME algo-
rithm had flaws in the exploitation phase, causing it to
become easily trapped in local optimums in high-dimen-
sional optimization problems [29]. Besides, it also strug-
gles to escape local optima during the original exploration
phase, which significantly limits its effectiveness in practi-
cal applications [30]. To address the above problems, some
researchers have sought to improve the RIME algorithm
by enhancing either its exploration or exploitation phases
[28, 31]. Nevertheless, these variants ignore the essential
need to improve both exploration and exploitation capabili-
ties simultaneously in the RIME algorithm. This may lead
to the algorithm struggling with convergence or becom-
ing prematurely trapped in local optima. In response to
the above issue, Yuan et al. [29] proposed SLCRIME by
incorporating the local optimal avoidance strategy and cross
strategy. Specifically, the local optimal avoidance strategy
boosted the exploratory ability based on two random agents
and the cross strategy enhanced the interactive information
exchange in the exploitation phase based on two other ran-
dom agents. In Ref[32]., an improved version of RIME was
developed featuring an interactive mechanism and a Gauss-
ian diffusion strategy. The interactive mechanism employed
two random agents and Levy flight mechanism to enhance
the exploration, and the Gaussian diffusion strategy was
introduced to boost the exploitation based on a random
agent and the best agent.

Although existing studies have substantially enhanced
the capability of the RIME algorithm, these variants still fall
short in the exploitation phase, which seriously affects their
robustness. To be specific, in the classic RIME algorithm
[24], updates in the exploitation phase are based solely on
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the position of the current best agent. If this position is not
the global optimum, all agents will be gradually assimilated
and become trapped in local optima. This update strategy
is preserved in Ref. [28]., which limits their exploitation
ability. In Refs. [29, 30]., the authors sought to conduct the
updates in the exploitation phase by exchanging information
between random agents. While this strategy can be effec-
tive in escaping the local optima, it neglects the essence of
the exploitation phase, i.e., the guidance of the best agent
on other agents. As a result, the convergence speed will be
reduced, computational expenses will be elevated, and the
algorithm may fail to find the global optimum. Unlike the
previous approach, the exploitation strategy was modified in
Refs. [31, 32]. by focusing on the neighborhood of the cur-
rent best agent position. In fact, this strategy can be effective
since the global optimum is sometimes located in the neigh-
borhood of a local optimum, especially for the problem of
PV parameter identification [33]. However, existing strat-
egies still rely on random agents to determine the search
range of the neighborhood, leading to an excessively large
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Fig. 1 The equivalent circuit of the PV model: (a) the SDM; (b) the
DDM,; (¢) the TDM

search area that hampers efficient and deep exploitation.
Due to the flaws in the exploitation phase described above,
these algorithms are struggling in estimating PV parameters
reliably.

Motivated by the above challenges, an improved RIME
algorithm with Enhanced Exploration and Exploitation
(Triple E), termed TERIME, is proposed in this paper to
enhance the robustness of PV parameter extraction for vari-
ous PV models. In the TERIME, the randomization strategy
and the neighborhood strategy are both incorporated into
the exploitation phase. Additionally, inspired by the work of
Ref. [28], a Differential Evolution (DE) mutation operator
is integrated into the exploration phase to further enhance
exploration capability. To show the effectiveness of the pro-
posed approach, the parameter extraction results of three PV
models (i.e., SDM, DDM, and TDM) using TERIME are
compared with several state-of-the-art algorithms on three
different datasets (RTC France, Photo Watt-PWP 201 and
mono-crystalline S75). The main contributions of this paper
can be summarized as follows:

e An improved RIME algorithm is developed by enhanc-
ing exploration and exploitation capabilities simultane-
ously for robust parameter identification of various PV
models.

e The randomization and neighborhood strategies are both
incorporated into the exploitation phase of the RIME al-
gorithm for the first time to strike the balance of exploi-
tation width and depth.

e The superior robustness of TERIME across various PV
models and environmental conditions is demonstrated
by comparisons with state-of-the-art meta-heuristic al-
gorithms on three different PV systems.

The rest of this paper is organized as follows: In Sect. 2, the
widely used PV models are introduced and the optimiza-
tion problem is formulated. Then, the classic RIME algo-
rithm and the proposed TERIME are presented in Sects. 3
and 4, respectively. Next, Sect. 5 provides the experimental
results. Finally, Sect. 6 concludes the paper.

2 PV Models and Optimization Problem
Formulation

2.1 Single Diode Model

The equivalent circuit of the SDM is illustrated in Fig. la.

According to the Kirchhoff’s law, the output current of the
SDM can be calculated as:

I=1Iy— 14— I, (1)
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where 1, is the generated photoelectric current; /, repre-
sents the current flowing through the diode; and [, refers to
the current flowing through the parallel resistance R,. By
applying the Shockley diode equation, /, can be derived as:

V+IR,
e o (VIR ] .
kT
V=, 3
t= 3)

where 7, denotes the reverse saturation current in the diode;
R, is the series resistance; V is the output voltage; V, is the
thermal voltage represented as Eq. (3); & is the Boltzmann
constant (1.380649x102* J K''); ¢ is the electron charge
(1.602176634 x 10°'? C); and T is the temperature of the PV
cell in kelvin.

1, in Eq. (1) can be computed as:

N

_ V+IR,

I
" Rsh

“4)

Then, based on Egs. (1)—(4), the output current / can be
described as:

V + IR, V + 1R,
I= Iph — 1o |:eXp (T‘/t) - 1j| - T} (5)

In order to describe the performance of a PV cell by the
SDM, there are five unknown parameters (1, £,, n, R, and
Ry;) to be determined.

2.2 Double Diode Model

Figure 1b shows the equivalent circuit of the DDM. Com-
pared to the SDM, the DDM takes into account the influence
of charge carrier recombination loss on the depletion region
[34]. Similar to the derivation of the SDM, the output cur-
rent of the DDM can be formulated as:

I =TIy — I, {exp <V+IR> - 1]

n1 Vi
V+ IR,
e (F2) ®
na Vi
_ V + IR,
Rsh ’

where 7, and [, are the reverse saturation current of the
two diodes; and n; and n, denote the ideality factor of the
two diodes. In the DDM, there are seven unknown parame-
ters (L, 1,1, 1,5, 1, 1y, R and Ry) to be identified, implying

ol>*02>
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higher dimensionality and more computation time with
respect to the SDM.

2.3 Triple Diode Model

The equivalent circuit of the TDM is presented in Fig. 1c. In
comparison to the DDM, the TDM can further consider the
recombination loss in defect regions and grain sites [35]. Its
output current can be written as:

V + 1R,
I=1y—1x {exp (T—;V> — 1]
t

V + IR,
— 1o2 [€XD W -1

V+IR,
— lo3 |€XP W -1

_ V + IR,
Rsh ’

(7

where [ ; and n, are the reverse saturation current and the
ideality factor of the third diode, respectively. The TDM is
the most complicated model with nine unknown parameters
Lyis Lo15 Ls Lo3s My M, 113, R and Ry), requiring the highest
computational cost.

2.4 Optimization Problem Formulation

The purpose of the PV model parameter extraction is to
make the constructed I-V curve based on the selected PV
model as consistent as possible with the measured one.
In general, the most commonly used and effective objec-
tive function is to minimize the Root Mean Square Error
(RMSE) [36], which can be expressed as:

N,
1 KR 2
RA[SE = \j Ni Z [Ical,i (Vnwaurc.i7 9) - Imcaurc,i} } (8)

=1

where N,, represents the number of the measured points in
the I-V curve; Imequre,i and Vi,equre,i are the measured
output current and voltage of the ith measured point, respec-
tively; I.q;,; denotes the calculated output current of the i th
measured point by the PV model given Vy,cqure,i; and ©
are the unknown parameters that need to be estimated.

Since the PV models (5)—(7) are nonlinear implicit tran-
scendental equations, it is difficult to solve them directly. In
this paper, the Lambert W function is used to obtain the cal-
culated current due to its superior accuracy and efficiency
[37]. The Lambert W function, denoted as W(x), is a multi-
branched function defined as the set of functions satisfying
the Eq. (9) for any complex number x.
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W (z)eW® =z )

Then, for the SDM, Eq. (5) can be rewritten as:

Rsh(Iph+Io) -V Vvt

I= — —nW 10
Rsh _|_ Rs Rs n (ﬂ)? ( )
where
o IoRsRsh Rsh(Rsth + Rslo + V))
= ViR, + Ran) e"p( Vi(Rs + Ron) (b
For the DDM:
Rgn (1, I, I0) =V Vi p
1= Ban Ph;;h i; )=V T W) e ()], (12)
where
_ I()leRsh, Rsh(Rslph + Rslnl + V))
Bl B nl‘/L(Rs + Rsh) P < 7L1‘/L(Rs + Rsh) (13)
o IO2RSRSh Rsh(Rsth + RSIDQ + V)>
Pz = noVi(Rs + Rsn) . ( naVi(Rs + Rsn) (14)
For the TDM:
I = Rsh(Iph + Iol + 102 + Io3) -V
- th [ W (B1) + n2W (B2) +n3sW(B3)],
where
o IOSRsRsh Rsh,(Rs]ph + RS[D3 + V)>
P = ViR + Ba) P ( n3Vi(Rs + Ro) - (19

It should be noted that a PV module consisting of several
cells connected in series can also be expressed by Eqgs. (5)—
(7). The only difference is the transformation of Eq. (3) into:

NkT
Vi= 7 (17)

where N, is the number of cells connected in series.

3 RIME Algorithm

The RIME algorithm is a physics-based meta-heuristic
optimization technique inspired by the natural process of
rime formation [24]. It distinguishes the growth patterns

of soft-rime and hard-rime under different wind speed. The
optimization procedure is shown below.

3.1 Rime Population Initialization

Similar to other population-based optimization techniques,
the RIME algorithm starts by generating the initial popula-
tion X. Specifically, the rime population consists of N rime
agents, and each agent is randomly positioned within the
search space to form the initial population, which can be
mathematically expressed as:

11 Zi2 - T1D
21 T22 -+ T2D

X = . R (18)
ITN1 TIN2 IND

Tij = LBj + 79 X (U37 — LBj) , (19)

ie{1,2,...,N},je{1,2,...,D},

where D represents the dimension of the optimized problem;
i and are the ordinal numbers that denote the agents and the
particles, respectively; 7, is a value randomly selected rang-
ing between 0 and 1; and UB, and LB; represent the upper
and lower boundaries of the jth particle, respectively.

3.2 Soft-rime Search Strategy

Under breezy conditions, the development of soft-rime is
entirely random and slow. Based on this phenomenon, the
RIME algorithm introduces a soft-rime search strategy.
This strategy can efficiently span the entire search space
and avoid becoming trapped in local optima. The location
of each particle can be formulated as:

Troun = T + 11700505+ (b (UB] ~ LB!) + LB) rs < B, (20)
where =, ; represents the new position update for the Jt

particle of the i rime agent; xiest indicates the position of
the /" particle of the best-performing rime agent currently;
7, is a control parameter that influences the direction of par-
ticle movement, which is randomly selected from —1 to 1;
r, is another random number ranging from 0 to 1; 6 adjusts
according to the number of iterations, which can be calcu-
lated by Eq. (21); f is a variable determined by Eq. (22),
illustrating the effect of environmental conditions on the
process; E denotes a factor affecting the probability of con-
densation as depicted in Eq. (23).

gt 21
="\ 10 Tmax ) @h
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-t
5:1—[“’ }/w, 22)
Tmax
E= t (23)
Tmax
where T_. denotes the maximum number of iterations; ¢

max
indicates the present iteration number; ['] represents the

rounding operator; w is assigned as 5.
3.3 Hard-rime Puncture Mechanism

Hard-rime forms under strong gale conditions. Its growth
pattern is simpler and more regular compared to that of soft-
rime. The RIME algorithm leverages this phenomenon and
introduces the hard-rime puncture mechanism, which can
effectively enhance the convergence and avoid local optima.
This mechanism can be mathematically expressed as:

Izzew,i = ‘Tg)est’ T3 < Fnorm(-ri)7 (24)

where Fl,orm (2;) represents the normalized fitness value of
the /™ search agent with respect to all agents, which deter-
mines the selection probability of the specific agent; r is a
random number ranging between 0 and 1.

3.4 Positive Greedy Selection Mechanism

Through the positive greedy selection mechanism, the fit-
ness value of the updated search agent is evaluated in
comparison to the previous agent. When the fitness of the
updated agent exceeds that of the previous agent, it replaces
the previous agent, updating both the agent and its fitness
value. This approach incrementally improves the quality of
the search agents, ensuring continuous population improve-
ment with each iteration.

4 Proposed TERIME Algorithm
4.1 Enhanced Exploration Approach

As mentioned in the introduction, the exploration phase
of the RIME algorithm formulated in Eq. (20) is associ-
ated with the current best agent. If the algorithm becomes
trapped in a local optimum, it will be hard to escape. To
alleviate this problem, inspired by the work of Ref. [28], we
introduce DE mutation operators. DE mutation operators are
common strategies for enhancing the population diversity
of meta-heuristic algorithms [38]. By introducing variations
through perturbation mechanism, these operators enable
the agents to explore the search space more thoroughly and

@ Springer

avoid premature convergence. Among these operators, the
DE/rand/1 operator is employed in this paper due to its sim-
plicity, effectiveness, and high randomness [39], which can
be expressed as:

Tnew,i = g +@- (xa - xb) (25)

where x, and x;, are two randomly selected agents from the
population; and ¢ is the mutation factor randomly generated
between 0 and 1. Then, we rewrite the original exploration

phase Eq. (20) as follows:
Tpew,i =Ti+ o (q — xp), ry > 0.5

xizeur,i = m{mst + T COS() : ﬂ

(h-(UB! ~LB]) + LB]), r2<Eandr; <05

= Ti, ro > FE and r4 < 0.5

(26)

Ineur,i

where 7, is a random number ranging between 0 and 1. By
combing the DE/rand/1 operator, updates of some agents in
the exploration phase will not rely on the current optimal
agent, thus enabling the algorithm to escape local optima.

4.2 Enhanced Exploitation Strategy

In the exploitation phase of the RIME algorithm, updates
are based solely on the position of the current best agent
as described in Eq. (24). If this position is not the global
optimum, all agents will eventually be assimilated, leading
to entrapment in a local optimum. To address this issue, the
crossover and Gaussian exploitation strategies are devel-
oped and integrated.

The crossover strategy is a randomization exploitation
strategy, which can be described as [29]:
z = xf] +C- (xé - xj) 27

new,s

it t
C = (cos (Tmax) + 1) . (1 - 2Tmax) (28)

where C is the crossover factor derived from (28); z? and

acg are the /™ particle of two randomly selected agents from
the population. The key difference between Eq. (25) and
Eq. (27) is the control factor: ¢ in Eq. (25) is a random num-
ber, while C in Eq. (27) decreases as the iteration number
increases.

On the other hand, the Gaussian exploitation strategy is
a neighborhood exploitation strategy, which can be derived
as:

J _ J J
Z"new,i =G (xbesﬁ Uxbest) (29)
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where G (xiest,ozrgest) denotes a normally distributed

random number with a mean of xiest and a standard devi-
ation of ngest; and o is the variation coefficient, and its
value is determined by the specific problem. In this paper,
o in Eq. (29) is set as 0.001. Then, the original exploitation
phase Eq. (24) can be rewritten as:

o — J . ) .
Tpew, = ¥ ; +C (-Li - 14) , 13 < Fhorm(;) and r5 > 0.5
J — J - - 4
T =G (-Tbespff-tbm) s r3 < Fhorm(2z;) and r5 < 0.5 (30)
T = T, 73 2 Fuorm (i)

where rs is a random number ranging between 0 and 1.
Compared to other variants of RIME algorithm [28-32], the
combination of crossover and Gaussian exploitation strate-
gies facilitates information exchange among agents and suf-
ficiently exploits the neighborhood of the current best agent,
which can assist the algorithm in avoiding local optima and
enhances the convergence speed.

4.3 Application Procedure of TERIME

With the consideration of the above improvements, the
pseudocode of TERIME is presented in Algorithm 1, and
the flowchart of TERIME is illustrated in Fig. 2. It is worth
mentioning that after the exploration and exploitation
phases, the new position of the agents might fall outside the
boundary. In order to alleviate the early convergence issue
resulting from the clustering of agents near the boundaries
of the search area, we adopt the strategy advised in Ref.
[40]. to adjust their positions, which can be expressed as:

,i _UBi+LB; UB,— LB
new 2 2

(2v-1) 31

where y is a random number between 0 and 1.

Input:

1. Tnar: Maximum number of iterations

2. N: Number of agents in the population

3. LB, UB: Lower and upper bounds of variables
4. f(): Objective function

Output:

1. The optimal solution and its best fitness value
Procedure:

Initialization

1. Generate the initial population of TERIME using Eq. (18)

2. Evaluate the fitness of the population using Eq. (8)

3. Calculate Fyrm of each agent using min-max normalization

4. While 1<7}4: do

Exploration

5 Update 0, B, E, C using Egs. (21, (22), (23) and (28)

6 For i=1 to N do

7. Generate random numbers 7 and 74

8 If 74<0.5 do

9 Update the position of agent i using Eq. (25)

10. Else do

11. If r<E do

12. Update the position of agent i using Eq. (20)
13. End if

14. End if

15. End for

Exploitation

16. For i=1 to N do

17. Generate random numbers 73 and 75

18. If 73<Fnorm(x:) do

19. If 75<0.5 do

20. Update the position of agent i using Eq. (29)
21. Else do

22. Update the position of agent i using Eq. (27)
23. End if

24. End if

25. End for

Boundary check and update

26. Perform boundary check and adjustment using Eq. (31)

27. Evaluate the fitness of the updated population using Eq. (8)
28. Replace any agent with the updated one if the fitness is improved

29. End while

Algorithm 1 Pseudocode of TERIME

5 Experimental Results
5.1 Dataset Description and Validation Schemes

In this section, I-V characteristics of three PV systems are
introduced to implement the proposed TERIME algorithm.
These PV datasets are widely used in the literature to assess
parameter estimation techniques for PV models [40]. Brief
introductions to these PV datasets is given as follows.

@ Springer
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Fig.2 Flow chart of TERIME

Initialize the population of TERIME via Eq. (19)
v

Evaluate the fitness according to Eq. (8)

A 4

Generate random number 7, and 74

No No
r4<0.5 » rn<E
Yes Y\l/
i=it+1
X Apply Eq. (25) to update Apply Eq. (20) to update
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I T
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Calculate F,,,, of each agent via
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Table 1 Lower and upper limits for the parameters of the three PV systems

Parameters RTC France PWP 201 S75

LB UB LB UB LB UB
Li/A 0 1 0 2 0 21,
1,1, 1,5, 15/HA 0 1 0 10 0 1
R/Q 0 0.5 0 2 0 2
R,/Q 0 100 0 2000 0 5000
n, ny, Ny, Ny 1 2 1 2 1 4

Dataset 1: a commercial solar cell RTC France, 57 mm
in diameter, with experimental I-V data recorded at 33 °C
under full illumination.

Dataset 2: a poly-crystalline PV module called Photo
Watt-PWP 201, which consists of 36 series-connected cells.
Its experimental I-V characteristic was measured at 45 °C
and 1000 W/m? irradiance.

Dataset 3: a poly-crystalline S75 PV module, composed
of 36 cells in series, and its experimental I-V data were mea-
sured under varying environmental conditions. Firstly, the
module was tested at a standard temperature of 25 °C under
five irradiance levels: 1000 W/m?, 800 W/m?, 600 W/m?,
400 W/m?, and 200 W/m?>. Then, the test was performed at
three different temperatures (20 °C, 40 °C, and 60 °C) under
a standard irradiance of 1000 W/m?.

The variation range of the parameters in SDM, DDM,
and TDM of these three PV systems is presented in Table 1
[40], where [, is the short circuit current of the S75 PV
module and its calculation is described in the Appendix.

To verify the effectiveness of TERIME, two rules are fol-
lowed to choose the representative competing algorithms:

e Variants of the RIME algorithm are considered, which
include MRIME [28], SLCRIME [29] and SRIME [31].
These variants strengthen exploration [28], exploitation
[29], or both [31], helping to demonstrate the advantag-
es of the proposed enhanced strategy.

e State-of-the-art algorithms for PV parameter estimation
are considered, which include DO [41], NGO [42], and
CLRao-1 [43]. These techniques, proposed in the last
three years, are noted for their robust performance and
are well-suited as benchmarks for comparison.

In addition, the I-V characteristics of the PV models based
on the parameters extracted by TERIME are compared with
the measured values to further demonstrate its effectiveness.
In practical applications, computational cost is the pri-
mary focus in PV parameter estimation. For fair comparison,
all the algorithms are configured with identical computa-
tional limits, setting the maximum objective function evalu-
ations E,, ., at 100,000 and the population size N at 20. In
since the objective function evaluation

TERIME, E,,,,.=T ..«
is performed once per iteration. Besides, since results from

Table 2 Comparison of RMSE results from 100 runs for the SDM,
DDM and TDM parameter extraction of RTC France
Algorithms Model Min/10™* Mean/10™* Max/10* SD

TERIME SDM  7.730063  7.730063  7.730063 1.0e-17
RIME 7.731401 15.888173 20.833180 0.00050
SLCRIME 7.730063  7.730063  7.730084 2.5e-10
SRIME 7.743956 14.817024 23.041004 0.00041
MRIME 7.730063  7.730063  7.730063 2.8e-17
DO 7.730093  9.137755 20.574846 0.00017
NGO 7.732488  7.777358  7.989294 4.5¢-06
CLRao-1 7.730063  7.730063  7.730063 2.0e-17
TERIME DDM 6.745134  6.745134  6.745134 2.0e-17
RIME 8.011388 29.400522 44.194571 0.00113
SLCRIME 6.794156  7.585225  8.032144 2.0e-05
SRIME 7.679083 13.633113 23.849559 0.00038
MRIME 6.745134  6.995867  7.952999 3.8e-05
DO 6.787838  8.894699 28.007019 0.00029
NGO 7.322259  7.974473  9.642399 2.8e-05
CLRao-1 6.745135  7.343943  7.730063 2.6e-05
TERIME TDM 5932588  6.455588  7.298956 6.3e-05
RIME 7.144043 21.347482 55.690168 0.00136
SLCRIME 6.184865  7.508216  7.954176 2.6e-05
SRIME 7.221689 12.212359 23.507644 0.00032
MRIME 5.843708  6.625793 20.831811 0.00021
DO 6.526195  9.382817 29.922138 0.00035
NGO 7.320781  8.123815 10.323165 4.6e-05
CLRao-1 5.944958  7.309326 20.832507 0.00014

The best results among the comparative algorithms are highlighted
in bold

these algorithms vary with each run, all the algorithms are
independently run 100 times on each PV model. The Maxi-
mum (Max), Mean, Minimum (Min), and Standard Devia-
tion (SD) RMSE values of 100 runs are then calculated to
assess the performance and robustness of these algorithms.

5.2 Results of RTC France PV Cell

According to the settings in Sect. 5.1, the RMSE values of
SDM, DDM and TDM parameter extraction for RTC France
in 100 runs are shown in Table 2. The PV parameters cor-
responding to the smallest RMSE for different algorithms
are given in the supplementary material. From Table 2, the
following findings could be given:
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e For the SDM, a robust global optimum 7.730063¢e-4 can
be obtained by TERIME, MRIME and CLRao-1 in all
the 100 runs.

e For the DDM, TERIME delivers the best results for
Mean, Max and SD values, significantly outperform-
ing other algorithms. MRIME and CLRao-1 can give
a global optimum in 100 runs, but their robustness is
inferior.

e Forthe TDM, MRIME gives a best Min value 5.843708e-
4 in 100 runs, followed by TERIME. However, re-
garding Mean and Max values, TERIME achieves the
best results and is markedly superior to those of other

4
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Fig. 3 RMSE box plots for three excellent algorithms for parameter
extraction of RTC France: (a) SDM; (b) DDM; (c) TDM
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techniques. Although SLCRIME and NGO give better
SD than that of TERIME, their Min, Mean and Max val-
ues are inferior to those of TERIME.

Then, Fig. 3 illustrates the RMSE box plots for the three
excellent algorithms, i.e., TERIME, MRIME, and CLRao-
1. It is evident that TERIME exhibits robust results with
good performance for all the PV models, especially for the
DDM. However, MRIME and CLRao-1 show reduced per-
formance when the complexity of the PV model increases.

Next, Fig. 4 illustrates the average convergence of all the
algorithms for the SDM, DDM and TDM parameter extrac-
tion. From Fig. 4, it can be found that:

e For the SDM, TERIME converges fastest to the neigh-
borhood of the global optimum in the first 20,000
iterations.

e For the DDM, MRIME has the fastest convergence
speed in the first 20,000 iterations, while TERIME out-
performs all the algorithms after 40,000 iterations.

e Forthe TDM, MRIME has the fastest convergence speed
in the first 20,000 iterations, followed by CLRao-1 and
TERIME. However, MRIME is surpassed by TERIME
after 70,000 iterations.

e Among all the algorithms, RIME and SRIME are easily
trapped in the local optimum. NGO, DO and SLCRIME
converges slowly and fails to reach the global optima
for the DDM and TDM. Compared to the above algo-
rithms, TERIME, MRIME and CLRao-1 have better
performance.

In summary, the ranking of all the algorithms for DDM and
TDM parameter extraction of RTC France is illustrated in
Fig. 5. A smaller ranking indicates better performance. As
shown in Fig. 5, we can conclude that TERIME is a compet-
itive algorithm with satisfactory performance and excellent
robustness. Although TERIME’s Min ranking is worse than
MRIME in TDM parameter extraction, TERIME achieves
the best Mean and Max ranking in both DDM and TDM
parameter extraction.

Subsequently, we focus on the goodness of fit between
the calculated data obtained by the PV model and the mea-
sured one, since an accurate I-V characteristic is what we
focus on. In order to quantify the error margins between the
measured and calculated data, the Individual Absolute Error
(IAE) for the output current is computed using Eq. (32).
Then, the IAEs of SDM, DDM and TDM for the RTC
France obtained by the TERIME are illustrated in Fig. 6.

IAEz = |Ical,i (Vmeaure,i; 9) -

(32)

Imeaure,i .
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As can be seen in Fig. 6, the IAE for all the measured data
remains below 1.6e-3 regardless of the PV model type, and
is below 1e-3 for most data, indicating the effectiveness of
TERIME. Moreover, TDM has the smallest IAE overall,
followed by DDM and finally SDM, demonstrating that
increasing the number of diodes enhances modeling accu-
racy in this case.

Furthermore, the calculated I-V curves from the SDM,
DDM, and TDM using TERIME are compared with the
measured one, as shown in Fig. 7. It can be deduced that the
optimal parameters estimated by TERIME are very close to
the actual cell parameters, since the calculated I-V curves fit
nearly all the measurements.

5.3 Results of PWP 201 PV Module

The RMSE values of the SDM, DDM and TDM parameter
extraction for the PWP 201 using different algorithms in 100
runs are shown in Table 3. The PV parameters correspond-
ing to the smallest RMSE for different algorithms are given
in the supplementary material. It can be seen that a robust
globally optimal value of 1.980210e-3, 1.235854e-3 and
1.235854e-3 can be presented by TERIME in all the 100
runs for all the PV models. Although the performance of
MRIME and CLRao-1 is robust for the SDM, their robust-
ness declines as PV model complexity increases.

Then, Fig. 8 displays the RMSE box plots of the three
best algorithms for the SDM, DDM and TDM parameter
extraction. Compared to MRIME and CLRao-1, TEMRIME
is more robust with fewer outliers across all the PV models.

Besides, the average convergence of all the algorithms
for the SDM, DDM and TDM parameter extraction is illus-
trated in Fig. 9. As seen in Fig. 9, the following conclusions
can be drawn:

e For the SDM, TERIME has the fastest convergence
speed to the global optimum, followed by CLRao-1.

e For the DDM, MRIME converges fastest within the
first 20,000 iterations. Nevertheless, TERIME outper-
forms all other algorithms after approximately 40,000
iterations.

e For the TDM, MRIME has the fastest convergence be-
fore 80,000 iterations, followed by CLRao-1. However,
TERIME overtakes MRIME after 80,000 iterations.

e RIME and SRIME are easily trapped in the local opti-
mum, while DO, NGO and SLCRIME converge slowly
and fail to approach the global optima for the DDM and
SDM.

Based on the above results, Fig. 10 illustrates the ranking of
all the algorithms for DDM and TDM parameter extraction
of PWP 201. As shown in Fig. 10, TERIME is always the
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Fig. 7 Comparison of measured I-V curve and calculated ones by the
SDM, DDM and TDM using TERIME for the RTC France

Table 3 Comparison of RMSE results from 100 runs for SDM, DDM
and TDM parameter extraction of PWP 201

Algorithms Model Min/107  Mean/107 Max/10 SD

TERIME SDM  1.980210 1.980210  1.980210 1.3e-17
RIME 1.982655 2.881791  3.779420 0.00064
SLCRIME 1.980210 1980211  1.980215 1.0e-09
SRIME 1.983797 2.632392  3.727036  0.00050
MRIME 1.980210 1.980210  1.980210 2.9e-17
DO 1.980221 2.080552  2.331327 8.6¢-05
NGO 1.980507 1.985768  2.051930 7.9e-06
CLRao-1 1.980210 1.980210  1.980210 4.8¢-17
TERIME DDM 1.235854 1.235854  1.235854 1.3e-17
RIME 1.553085 3.806825  6.910481 0.00158
SLCRIME 1325982 1.507803  1.616501 6.1¢-05
SRIME 1788223 2.525695  3.574089  0.00039
MRIME 1.235854 1257171  1.977165 0.00010
DO 1299107 1.992142  2.445353  0.00018
NGO 1393959 1.949974  2.369973 0.00012
CLRao-1 1243882 1.427011  1.980210 0.00016
TERIME TDM 1235854 1.236097 1259446 2.3e-06
RIME 1.475659 3.093056  8.945386 0.00141
SLCRIME 1319558 1.539146  1.684990 7.9¢-05
SRIME 1786145 2.505483  3.671453  0.00041
MRIME 1.235854  1.240255  1.276928  1.26¢-05
DO 1282257 1.947251 2279401  0.00021
NGO 1.659848 1.954069 2203206 0.00011
CLRao-1 1237706 1.365158  1.703721 9.7¢-05

The best results among the comparative algorithms are highlighted

in bold

best for the parameter identification of PWP 201 in terms of
Min, Mean and Max, demonstrating its exceptional perfor-
mance and robustness.

Next, we examine the goodness of fit between the cal-
culated data and the measured data. Figure 11 illustrates
the IAEs of SDM, DDM, and TDM for the PWP 201 using
parameters obtained by TERIME. It is evident that all the
measured data are below 4e-3, irrespective of the PV model
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Fig. 8 RMSE box plots for three excellent algorithms for parameter
extraction of PWP 201: (a) SDM; (b) DDM; (¢c) TDM

type, demonstrating the effectiveness of TERIME. Interest-
ingly, while the IAE for DDM is smaller than that of SDM,
it is almost identical to the TDM, indicating that adding
more diodes does not always enhance model accuracy.

Additionally, the calculated I-V curves for SDM, DDM,
and TDM with parameters extracted by TERIME are com-
pared with the measured one in Fig. 12. This comparison
indicates that the optimal parameters estimated by TERIME
are very close to the actual cell parameters, as the calculated
I-V curves align closely with the measurements.
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Fig.9 Average convergence performance from 100 runs for parameter
extraction of PWP 201: (a) SDM; (b) DDM; (¢) TDM

5.4 Results of S75 PV Module under Varying
Irradiance and Temperature

Based on the above results, the difference in the performance
of the meta-heuristic algorithms is mainly in the parameter
extraction of DDM and TDM. Therefore, in this subsection,
we compare the RMSE results for parameter extraction on
DDM and TDM under varying irradiance and tempera-
ture. Besides, instead of comparing all the algorithms as in
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Sects. 5.2 and 5.3, we choose MRIME, and CLRao-1 for
comparison because they always achieve remarkable per-
formance in the above PV parameter extraction task.

Firstly, the RMSE results for DDM parameter extrac-
tion of the S75 under various irradiance and temperature are
listed in Table 4, and the corresponding RMSE box plots are
shown in Fig. 13. From Table 4, although all the algorithms
can give a global optima in 100 runs under all the condi-
tions except CLRao-1 at 200 W/m? and 25 °C, TERIME
has the best Mean, Max and SD under all the conditions,
which showcases its superior robustness. Besides, as shown
in Fig. 13, TERIME has fewer outliers compared to other
algorithms under all the conditions.

Then, the RMSE results for TDM parameter extraction
of the S75 under various irradiance and temperature are
listed in Table 5, and the corresponding RMSE box plots
are shown in Fig. 14. From Table 5, MRIME and TERIME
can always give the global optima in 100 runs under all the
conditions. Notably, TERIME has the best Max and SD
under all the conditions, showing its extraordinary robust-
ness. Besides, as seen in Fig. 14, TERIME has fewer outli-
ers compared to other algorithms under all the conditions.

Besides, the average rankings of these three algorithms
for parameter extraction on S75 across all the environmen-
tal conditions are illustrated in Fig. 15. It is shown that
TERIME presents the best ranking of Mean and Max for
both the DDM and TDM, although the ranking of Min for
TDM is slightly inferior to MRIME. This demonstrates that
TERIME can give a superior robust solution under varying
environmental conditions.

5.5 Discussions of Parameter Settings

The population size and the number of evaluations sig-
nificantly influence the performance of meta-heuristic
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Table 4 Comparison of RMSE results from 100 runs for DDM parameter extraction of S75 under varying irradiance and temperature

Algorithms G/Wm? T/ °C Min/1072 Mean/102 Max/102 SD

TERIME 200 25 0.432351 0.432351 0.432351 1.27e-17
MRIME 0.432351 0.432811 0.445754 1.84¢-05
CLRao-1 0.432444 0.432621 0.432773 1.30e-06
TERIME 400 25 1.102118 1.102118 1.102118 5.58¢-17
MRIME 1.102118 1.102129 1.103145 1.03e-06
CLRao-1 1.102118 1.102118 1.102118 6.10e-17
TERIME 600 25 1.418367 1.418367 1.418367 7.50e-17
MRIME 1.418367 1.418368 1.418394 2.66e-08
CLRao-1 1.418367 1.418367 1.418367 7.96¢-17
TERIME 800 25 1.968935 1.968935 1.968935 9.31e-17
MRIME 1.968935 1.968994 1.974749 5.81e-06
CLRao-1 1.968935 1.968935 1.968935 1.05¢-16
TERIME 1000 25 1.962142 1.962257 1.969512 8.14e-06
MRIME 1.962142 1.987169 3.430604 0.00173
CLRao-1 1.962142 2.007249 2.088595 0.00019
TERIME 1000 20 1.811789 1.811789 1.811789 1.46e-16
MRIME 1.811789 1.839210 2.974532 0.00129
CLRao-1 1.811789 1.859859 2.026441 0.00066
TERIME 1000 40 1.281773 1.281773 1.281773 1.53¢-16
MRIME 1.281773 1.285465 1.425530 0.00021
CLRao-1 1.281774 1317110 1.492325 0.00052
TERIME 1000 60 2.578601 2.578601 2.578601 1.24e-16
MRIME 2.578601 2.580017 2.682043 0.00011
CLRao-1 2.578601 2.582320 2.881917 0.00031

The best results among the comparative algorithms are highlighted in bold

Fig. 13 RMSE box plots for three excellent algo-
rithms for DDM parameter extraction of S75 under
varying irradiance and temperature
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algorithms. Therefore, in this section, we focus on analyz-
ing their effects on the experimental results using the param-
eter extraction of RTC France as a case study. Again, only
the results of DDM and TDM are analyzed.

Firstly, the average convergence performances of all the
algorithms under different population sizes on DDM are
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shown in Fig. 16. For DDM parameter extraction, the fol-
lowing conclusion can be drawn:

e As the population size increases, the convergence speed

of TERIME initially accelerates and then decreases,
with the optimal speed observed at N=20.
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Table 5 Comparison of RMSE results from 100 runs for TDM parameter extraction of S75 under varying irradiance and temperature

Algorithms G/Wm? T/ °C Min/1072 Mean/102 Max/102 SD
TERIME 200 25 0.431861 0.431948 0.431969 2.2¢-07
MRIME 0.431861 0.432303 0.432773 3.2¢-06
CLRao-1 0.432247 0.432535 0.432773 9.3¢-07
TERIME 400 25 1.099577 1.099577 1.099577 6.6e-17
MRIME 1.099577 1.099577 1.099577 2.8e-16
CLRao-1 1.099577 1.099577 1.099577 7.1e-17
TERIME 600 25 1.418367 1.418367 1.418367 7.8e-17
MRIME 1.418367 1.418484 1.430003 1.1-05
CLRao-1 1.418367 1.418367 1.418367 1.2¢-16
TERIME 800 25 1.968935 1.968935 1.968935 8.7e-17
MRIME 1.968935 1.968993 1.974749 5.8e-06
CLRao-1 1.968935 1.998208 1.974749 5.8e-06
TERIME 1000 25 1.950811 1.959215 1.974729 4.0e-05
MRIME 1.944691 1.957261 2.094792 0.00015
CLRao-1 1.957345 2.005946 2.089124 0.00018
TERIME 1000 20 1.760594 1.771689 1.811789 0.00012
MRIME 1.760594 1.763839 1.878742 0.00015
CLRao-1 1.760594 1.864216 2.975370 0.00122
TERIME 1000 40 1.264338 1.268166 1.283026 3.4e-05
MRIME 1.264338 1.285377 1.663468 0.00079
CLRao-1 1.269061 1.310599 1.663485 0.00042
TERIME 1000 60 2.222116 2.222116 2.222116 1.5e-15
MRIME 2.222116 2.224396 2.450037 0.00023
CLRao-1 2.222116 2.262531 2.579461 0.00108

The best results among the comparative algorithms are highlighted in bold

Fig. 14 RMSE box plots for three excellent algo- 400W/m2 25°C
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Table 6 Parameter values of the S75 extracted from its datasheet

Parameters Values
Isc,stc/A 4.7
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Fig. 15 Average ranking of three excellent algorithms for parameter
extraction on S75: (a) DDM; (b) TDM

e Across all population sizes, TERIME demonstrates
superior performance compared to other algorithms at
100,000 evaluations of the objective function.

e With a sufficient population size but limited evaluations
of the objective function, TERIME performs worse than
MRIME. However, the performance of MRIME drops
significantly with a small population size (e.g., N=10),
while TERIME maintains excellent performance.

Then, the minimum and mean values of RMSE from 100
runs using TERIME for parameter extraction of RTC France

on DDM under different population sizes and number of
objective function evaluations are illustrated in Fig. 17.
It can be seen that when N=20, TERIME presents better
results compared to other population sizes. As the num-
ber of evaluations increases, the performance of TERIME
improves. When N=20 and E,,,,=100,000, TERIME gives
the best results.

Next, the average convergence performances of all the
algorithms under different population sizes on TDM are dis-
played in Fig. 18. For TDM parameter extraction, we can
deduce that:

e As the population size increases, TERIME needs more
number of evaluations for convergence.

e When N=10 and N=20, TERIME demonstrates superi-
or performance compared to other algorithms at 100,000
evaluations of the objective function, while as N=30
and N=40, its performance is inferior to MRIME due to
limited number of function evaluations.

Subsequently, the minimum and mean values of RMSE
from 100 runs using TERIME for parameter extraction of
RTC France on TDM under different population sizes and
number of objective function evaluations are illustrated in
Fig. 19. It can be seen that as the number of evaluations
increases, the performance of TERIME improves. When
N=20, TERIME presents better Min values compared to
other population sizes. When N=10, TERIME presents bet-
ter Mean values. If a robust result is preferred in practical
applications, N=10 and E,,, =100,000 should be selected.

6 Conclusion

In order to tackle the robustness challenge in PV param-
eter extraction as the complexity of the PV model increases,
an improved RIME algorithm called TERIME is proposed.
In TERIME, the DE/rand/1 mutation operator is integrated
into the exploration phase to enhance population diversity.
During the exploitation phase, the crossover strategy and
the Gaussian strategy are combined to exchange informa-
tion among agents randomly and exploit the neighborhood
of the current best agent. The results on three PV datasets
demonstrate that:

e For datasets 1 and 2, TERIME consistently presents
robust solutions as PV model complexity increases,
with average RMSE reduction of (3.24%, 2.57%) and
(1.70%, 0.34%) over other algorithms for (DDM, TDM)
parameter extraction on the RTC France and PWP201,
respectively.
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Fig. 16 Average convergence performance from 100 runs for parameter extraction of RTC France on DDM: (a) N=10; (b) N=20; (c) N=30; (d)
N=40
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Fig. 17 Minimum and mean values of RMSE from 100 runs using TERIME for parameter extraction of RTC France on DDM under different
population sizes and number of objective function evaluations: (a) Min; (b) Mean
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e For dataset 3, TERIME provides robust solutions under
varying environmental conditions, achieving the best
average rankings in Mean and Max values of RMSE for
DDM and TDM parameter extraction.

e Based on discussions, when using TERIME for param-
eter extraction of DDM and TDM, population size is
suggested to be set as 10 and 20, respectively.

In summary, TERIME can serve as a reliable optimization
tool for accurate parameter identification across various PV
models and environmental conditions. Beyond the work of
this study, we will extend the proposed exploitation strategy
to other meta-heuristic algorithms. Furthermore, dynamic
adjustment of the exploitation strategy during iterations
is an interesting direction for enhancing the convergence
speed of the proposed method in limited evaluations.
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