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PV	� Photovoltaic
RMSE	� Root mean square error
SD	� Standard deviation
SDM	� Single diode model
SLCRIME	� Sobol local cross RIME
SRIME	� Strengthened RIME
TDM	� Triple diode model
TERIME	� Enhanced exploration and exploitation RIME

1  Introduction

As the demand for energy grows worldwide, the shortage 
of fossil fuels and their environmental impact are becom-
ing increasingly apparent. The effective development and 
utilization of renewable energy is a solution to avoid energy 
shortage and minimize environmental pollution [1]. Photo-
voltaic (PV) technology utilizing solar energy is the most 
promising renewable energy due to its high cost-effective-
ness and excellent operational performance [2] and has been 
widely used in modern society [3–5]. Establishing reliable 

Abbreviations
CLRao-1	� Comprehensive learning Rao-1
DDM	� Double diode model
DE	� Differential evolution
DO	� Dandelion optimizer
ECM	� Equivalent circuit model
IAE	� Individual absolute error
MRIME	� Modified RIME
NGO	� Northern Goshawk optimization

	
 Xiao-Yang Li
leexy@buaa.edu.cn

Shi-Shun Chen
css1107@buaa.edu.cn

Yu-Tong Jiang
sy2314206@buaa.edu.cn

Wen-Bin Chen
chenwenbin@buaa.edu.cn

1	 School of Reliability and Systems Engineering, Beihang 
University, Beijing 100191, China

Abstract
Parameter extraction of photovoltaic (PV) models is crucial for the planning, optimization, and control of PV systems. 
Although some methods using meta-heuristic algorithms have been proposed to determine these parameters, the robust-
ness of solutions obtained by these methods faces great challenges when the complexity of the PV model increases. The 
unstable results will affect the reliable operation and maintenance strategies of PV systems. In response to this challenge, 
an improved rime optimization algorithm with enhanced exploration and exploitation, termed TERIME, is proposed for 
robust and accurate parameter identification for various PV models. Specifically, the differential evolution mutation opera-
tor is integrated in the exploration phase to enhance the population diversity. Meanwhile, a new exploitation strategy incor-
porating randomization and neighborhood strategies simultaneously is developed to maintain the balance of exploitation 
width and depth. The TERIME algorithm is applied to estimate the optimal parameters of the single diode model, double 
diode model, and triple diode model combined with the Lambert-W function for three PV cell and module types includ-
ing RTC France, Photo Watt-PWP 201 and S75. According to the statistical analysis in 100 runs, the proposed algorithm 
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PV models is crucial for planning, optimizing, and control-
ling PV systems across various usage scenarios. However, 
developing physical models based on PV power generation 
mechanisms is challenging, since the relationship between 
the current and voltage of PV is implicit and nonlinear. In 
contrast, the Equivalent Circuit Model (ECM) simplifies the 
working mechanism of PV into electrical elements which 
are easier to analyze and understand [6]. Besides, ECMs are 
capable of adapting to various PV technologies and configu-
rations, allowing for a wide range of applications in practi-
cal applications.

Typically, the primary ECMs employed for modeling 
the performance of PV systems are the Single Diode Model 
(SDM) [7], the Double Diode Model (DDM) [8], and the 
Triple Diode Model (TDM) [9]. The choice among these 
models is primarily determined by a balance between sim-
plicity and accuracy. While the SDM is favored for its sim-
plicity and ease of implementation, the DDM and TDM 
offer more detailed analysis, particularly valuable under 
low irradiance conditions [10]. Despite the effectiveness of 
ECMs in modeling PV systems, these models rely on param-
eters that are often unavailable in manufacturers’ datasheets 
and vary significantly with environmental conditions [11]. 
Consequently, there has been a growing interest in accurate 
and robust parameter identification of PV models in varying 
environmental conditions.

In the literature, methods for estimating parameters 
in PV models can be generally divided into three catego-
ries: analytical methods [12], numerical methods [13], and 
meta-heuristic methods [14]. Analytical methods derive 
the analytical expressions for the unknown parameters by 
using three significant points from the manufacturers’ data-
sheet: open circuit voltage, short circuit current, and maxi-
mum power point. However, recent findings indicate that 
the limited data available in the datasheet is inadequate to 
uniquely identify all the unknown parameters [15]. There-
fore, researchers seek to extract parameters from the mea-
sured current-voltage curve (I-V curve) of the PV system 
to ensure the model accuracy [16]. Numerical methods, 
which employ the iterative method (e.g., Newton-Raphson 
approach) to extract parameters from the I-V curve, can 
theoretically determine PV parameters given sufficient data. 
Nevertheless, numerical methods often get stuck in local 
minima near the initial estimate, hindering the attainment 
of a global optimum [17]. Fortunately, meta-heuristic meth-
ods have shown excellent performance in extracting PV 
parameters, without the assumptions and initial estimates 
required by analytical and numerical methods. Therefore, 
many meta-heuristic algorithms have been utilized for PV 
parameter identification [18–20].

Although extensive research has been conducted on 
extracting PV parameters using meta-heuristic methods, 

accurate and reliable evaluation of these parameters remains 
challenging. As the complexity of the PV model increases, 
the robustness of meta-heuristic algorithms may degrade, 
greatly increasing computational costs [21]. Thus, the 
development of suitable meta-heuristic algorithms remains 
an open research question. In fact, the performance of meta-
heuristic algorithms is highly dependent on the dual pro-
cesses of exploration and exploitation [22]. Exploration 
is characterized by the investigation of completely new 
regions in a search space, whereas exploitation refers to vis-
iting regions close to previously visited points [23]. RIME 
(rime optimization) is one of the latest meta-heuristic algo-
rithms proposed by Su et al. [24] in 2023. It has shown robust 
exploration and exploitation capabilities compared to vari-
ous basic meta-heuristic algorithms in multiple real-world 
problems. With its intuitive structure and no requirement 
for hyper-parameter tuning, it has garnered considerable 
attention and has already achieved good performance and 
robustness in various applications [25–27], including PV 
parameter extraction [28].

However, recent studies indicated that the RIME algo-
rithm had flaws in the exploitation phase, causing it to 
become easily trapped in local optimums in high-dimen-
sional optimization problems [29]. Besides, it also strug-
gles to escape local optima during the original exploration 
phase, which significantly limits its effectiveness in practi-
cal applications [30]. To address the above problems, some 
researchers have sought to improve the RIME algorithm 
by enhancing either its exploration or exploitation phases 
[28, 31]. Nevertheless, these variants ignore the essential 
need to improve both exploration and exploitation capabili-
ties simultaneously in the RIME algorithm. This may lead 
to the algorithm struggling with convergence or becom-
ing prematurely trapped in local optima. In response to 
the above issue, Yuan et al. [29] proposed SLCRIME by 
incorporating the local optimal avoidance strategy and cross 
strategy. Specifically, the local optimal avoidance strategy 
boosted the exploratory ability based on two random agents 
and the cross strategy enhanced the interactive information 
exchange in the exploitation phase based on two other ran-
dom agents. In Ref [32]., an improved version of RIME was 
developed featuring an interactive mechanism and a Gauss-
ian diffusion strategy. The interactive mechanism employed 
two random agents and Levy flight mechanism to enhance 
the exploration, and the Gaussian diffusion strategy was 
introduced to boost the exploitation based on a random 
agent and the best agent.

Although existing studies have substantially enhanced 
the capability of the RIME algorithm, these variants still fall 
short in the exploitation phase, which seriously affects their 
robustness. To be specific, in the classic RIME algorithm 
[24], updates in the exploitation phase are based solely on 
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the position of the current best agent. If this position is not 
the global optimum, all agents will be gradually assimilated 
and become trapped in local optima. This update strategy 
is preserved in Ref. [28]., which limits their exploitation 
ability. In Refs. [29, 30]., the authors sought to conduct the 
updates in the exploitation phase by exchanging information 
between random agents. While this strategy can be effec-
tive in escaping the local optima, it neglects the essence of 
the exploitation phase, i.e., the guidance of the best agent 
on other agents. As a result, the convergence speed will be 
reduced, computational expenses will be elevated, and the 
algorithm may fail to find the global optimum. Unlike the 
previous approach, the exploitation strategy was modified in 
Refs. [31, 32]. by focusing on the neighborhood of the cur-
rent best agent position. In fact, this strategy can be effective 
since the global optimum is sometimes located in the neigh-
borhood of a local optimum, especially for the problem of 
PV parameter identification [33]. However, existing strat-
egies still rely on random agents to determine the search 
range of the neighborhood, leading to an excessively large 

search area that hampers efficient and deep exploitation. 
Due to the flaws in the exploitation phase described above, 
these algorithms are struggling in estimating PV parameters 
reliably.

Motivated by the above challenges, an improved RIME 
algorithm with Enhanced Exploration and Exploitation 
(Triple E), termed TERIME, is proposed in this paper to 
enhance the robustness of PV parameter extraction for vari-
ous PV models. In the TERIME, the randomization strategy 
and the neighborhood strategy are both incorporated into 
the exploitation phase. Additionally, inspired by the work of 
Ref. [28], a Differential Evolution (DE) mutation operator 
is integrated into the exploration phase to further enhance 
exploration capability. To show the effectiveness of the pro-
posed approach, the parameter extraction results of three PV 
models (i.e., SDM, DDM, and TDM) using TERIME are 
compared with several state-of-the-art algorithms on three 
different datasets (RTC France, Photo Watt-PWP 201 and 
mono-crystalline S75). The main contributions of this paper 
can be summarized as follows:

	● An improved RIME algorithm is developed by enhanc-
ing exploration and exploitation capabilities simultane-
ously for robust parameter identification of various PV 
models.

	● The randomization and neighborhood strategies are both 
incorporated into the exploitation phase of the RIME al-
gorithm for the first time to strike the balance of exploi-
tation width and depth.

	● The superior robustness of TERIME across various PV 
models and environmental conditions is demonstrated 
by comparisons with state-of-the-art meta-heuristic al-
gorithms on three different PV systems.

The rest of this paper is organized as follows: In Sect. 2, the 
widely used PV models are introduced and the optimiza-
tion problem is formulated. Then, the classic RIME algo-
rithm and the proposed TERIME are presented in Sects. 3 
and 4, respectively. Next, Sect. 5 provides the experimental 
results. Finally, Sect. 6 concludes the paper.

2  PV Models and Optimization Problem 
Formulation

2.1  Single Diode Model

The equivalent circuit of the SDM is illustrated in Fig. 1a. 
According to the Kirchhoff’s law, the output current of the 
SDM can be calculated as:

I = Iph − Id − Ish,� (1)Fig. 1  The equivalent circuit of the PV model: (a) the SDM; (b) the 
DDM; (c) the TDM
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higher dimensionality and more computation time with 
respect to the SDM.

2.3  Triple Diode Model

The equivalent circuit of the TDM is presented in Fig. 1c. In 
comparison to the DDM, the TDM can further consider the 
recombination loss in defect regions and grain sites [35]. Its 
output current can be written as:

I = Iph − Io1

[
exp

(
V + IRs

n1Vt

)
− 1

]

− Io2

[
exp

(
V + IRs

n2Vt

)
− 1

]

− Io3

[
exp

(
V + IRs

n3Vt

)
− 1

]

− V + IRs

Rsh
,

� (7)

where Io3 and n3 are the reverse saturation current and the 
ideality factor of the third diode, respectively. The TDM is 
the most complicated model with nine unknown parameters 
(Iph, Io1, Io2, Io3, n1, n2, n3, Rs and Rsh), requiring the highest 
computational cost.

2.4  Optimization Problem Formulation

The purpose of the PV model parameter extraction is to 
make the constructed I-V curve based on the selected PV 
model as consistent as possible with the measured one. 
In general, the most commonly used and effective objec-
tive function is to minimize the Root Mean Square Error 
(RMSE) [36], which can be expressed as:

RMSE =

√√√√ 1
Nm

Nm∑
i=1

[Ical,i (Vmeaure,i, Θ) − Imeaure,i]2,� (8)

where Nm represents the number of the measured points in 
the I-V curve; Imeaure,i and Vmeaure,i are the measured 
output current and voltage of the ith measured point, respec-
tively; Ical,i denotes the calculated output current of the i th 
measured point by the PV model given Vmeaure,i; and Θ 
are the unknown parameters that need to be estimated.

Since the PV models (5)–(7) are nonlinear implicit tran-
scendental equations, it is difficult to solve them directly. In 
this paper, the Lambert W function is used to obtain the cal-
culated current due to its superior accuracy and efficiency 
[37]. The Lambert W function, denoted as W(x), is a multi-
branched function defined as the set of functions satisfying 
the Eq. (9) for any complex number x.

where Iph is the generated photoelectric current; Id repre-
sents the current flowing through the diode; and Ish refers to 
the current flowing through the parallel resistance Rsh. By 
applying the Shockley diode equation, Id can be derived as:

Id = Io

[
exp

(
V + IRs

nVt

)
− 1

]
,� (2)

Vt = kT

q
,� (3)

where Io denotes the reverse saturation current in the diode; 
Rs is the series resistance; V is the output voltage; Vt is the 
thermal voltage represented as Eq. (3); k is the Boltzmann 
constant (1.380649 × 10–23 J K−1); q is the electron charge 
(1.602176634 × 10–19 C); and T is the temperature of the PV 
cell in kelvin.

Ish in Eq. (1) can be computed as:

Ish = V + IRs

Rsh
.� (4)

Then, based on Eqs.  (1)–(4), the output current I can be 
described as:

I = Iph − Io

[
exp

(
V + IRs

nVt

)
− 1

]
− V + IRs

Rsh
.� (5)

In order to describe the performance of a PV cell by the 
SDM, there are five unknown parameters (Iph, Io, n, Rs and 
Rsh) to be determined.

2.2  Double Diode Model

Figure 1b shows the equivalent circuit of the DDM. Com-
pared to the SDM, the DDM takes into account the influence 
of charge carrier recombination loss on the depletion region 
[34]. Similar to the derivation of the SDM, the output cur-
rent of the DDM can be formulated as:

I = Iph − Io1

[
exp

(
V + IRs

n1Vt

)
− 1

]

− Io2

[
exp

(
V + IRs

n2Vt

)
− 1

]

− V + IRs

Rsh
,

� (6)

where Io1 and Io2 are the reverse saturation current of the 
two diodes; and n1 and n2 denote the ideality factor of the 
two diodes. In the DDM, there are seven unknown parame-
ters (Iph, Io1, Io2, n1, n2, Rs and Rsh) to be identified, implying 
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of soft-rime and hard-rime under different wind speed. The 
optimization procedure is shown below.

3.1  Rime Population Initialization

Similar to other population-based optimization techniques, 
the RIME algorithm starts by generating the initial popula-
tion X. Specifically, the rime population consists of N rime 
agents, and each agent is randomly positioned within the 
search space to form the initial population, which can be 
mathematically expressed as:

X =




x11 x12 · · · x1D
x21 x22 · · · x2D
...

...
. . .

...
xN1 xN2 · · · xND


 ,� (18)

xij = LBj + r0 × (UBj − LBj) ,

i ∈ {1, 2, . . . , N} , j ∈ {1, 2, . . . , D} ,
� (19)

where D represents the dimension of the optimized problem; 
i and j are the ordinal numbers that denote the agents and the 
particles, respectively; r0 is a value randomly selected rang-
ing between 0 and 1; and UBj and LBj represent the upper 
and lower boundaries of the jth particle, respectively.

3.2  Soft-rime Search Strategy

Under breezy conditions, the development of soft-rime is 
entirely random and slow. Based on this phenomenon, the 
RIME algorithm introduces a soft-rime search strategy. 
This strategy can efficiently span the entire search space 
and avoid becoming trapped in local optima. The location 
of each particle can be formulated as:

xj
new,i = xj

best + r1 · cos θ · β ·
(

h ·
(

UBj
i − LBj

i

)
+ LBj

i

)
, r2 ⩽ E,� (20)

where xj
new,i represents the new position update for the jth 

particle of the ith rime agent; xj
best indicates the position of 

the jth particle of the best-performing rime agent currently; 
r1 is a control parameter that influences the direction of par-
ticle movement, which is randomly selected from − 1 to 1; 
r2 is another random number ranging from 0 to 1; θ adjusts 
according to the number of iterations, which can be calcu-
lated by Eq.  (21); β is a variable determined by Eq.  (22), 
illustrating the effect of environmental conditions on the 
process; E denotes a factor affecting the probability of con-
densation as depicted in Eq. (23).

θ = π

(
t

10 · Tmax

)
,� (21)

W (x)eW (x) = x.� (9)

Then, for the SDM, Eq. (5) can be rewritten as:

I = Rsh(Iph + Io) − V

Rsh + Rs
− Vt

Rs
nW (β),� (10)

where

β = IoRsRsh

nVt(Rs + Rsh)
exp

(
Rsh(RsIph + RsIo + V )

nVt(Rs + Rsh)

)
.� (11)

For the DDM:

I = Rsh(Iph + Io1 + Io2) − V

Rsh + Rs
− Vt

Rs
[n1W (β1) + n2W (β2)] ,� (12)

where

β1 = Io1RsRsh

n1Vt(Rs + Rsh)
exp

(
Rsh(RsIph + RsIo1 + V )

n1Vt(Rs + Rsh)

)
,� (13)

β2 = Io2RsRsh

n2Vt(Rs + Rsh)
exp

(
Rsh(RsIph + RsIo2 + V )

n2Vt(Rs + Rsh)

)
.� (14)

For the TDM:

I = Rsh(Iph + Io1 + Io2 + Io3) − V

Rsh + Rs

− Vt

Rs
[n1W (β1) + n2W (β2) + n3W (β3)] ,

� (15)

where

β3 = Io3RsRsh

n3Vt(Rs + Rsh)
exp

(
Rsh(RsIph + RsIo3 + V )

n3Vt(Rs + Rsh)

)
,� (16)

It should be noted that a PV module consisting of several 
cells connected in series can also be expressed by Eqs. (5)–
(7). The only difference is the transformation of Eq. (3) into:

Vt = NskT

q
,� (17)

where Ns is the number of cells connected in series.

3  RIME Algorithm

The RIME algorithm is a physics-based meta-heuristic 
optimization technique inspired by the natural process of 
rime formation [24]. It distinguishes the growth patterns 
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avoid premature convergence. Among these operators, the 
DE/rand/1 operator is employed in this paper due to its sim-
plicity, effectiveness, and high randomness [39], which can 
be expressed as:

xnew,i = xi + φ · (xa − xb)� (25)

where xa and xb are two randomly selected agents from the 
population; and φ is the mutation factor randomly generated 
between 0 and 1. Then, we rewrite the original exploration 
phase Eq. (20) as follows:



xnew,i = xi + φ · (xa − xb) , r4 > 0.5
xj

new,i = xj
best + r1 · cos θ · β

·
(

h ·
(

UBj
i − LBj

i

)
+ LBj

i

)
, r2 ⩽ E and r4 ⩽ 0.5

xnew,i = xi, r2 > E and r4 ⩽ 0.5

� (26)

where r4 is a random number ranging between 0 and 1. By 
combing the DE/rand/1 operator, updates of some agents in 
the exploration phase will not rely on the current optimal 
agent, thus enabling the algorithm to escape local optima.

4.2  Enhanced Exploitation Strategy

In the exploitation phase of the RIME algorithm, updates 
are based solely on the position of the current best agent 
as described in Eq.  (24). If this position is not the global 
optimum, all agents will eventually be assimilated, leading 
to entrapment in a local optimum. To address this issue, the 
crossover and Gaussian exploitation strategies are devel-
oped and integrated.

The crossover strategy is a randomization exploitation 
strategy, which can be described as [29]:

xj
new,i = xj

i,j + C ·
(

xj
c − xj

d

)
� (27)

C =
(

cos
(

πt

Tmax

)
+ 1

)
·
(

1 − t

2Tmax

)
� (28)

where C is the crossover factor derived from (28); xj
c and 

xj
d are the jth particle of two randomly selected agents from 

the population. The key difference between Eq.  (25) and 
Eq. (27) is the control factor: φ in Eq. (25) is a random num-
ber, while C in Eq. (27) decreases as the iteration number 
increases.

On the other hand, the Gaussian exploitation strategy is 
a neighborhood exploitation strategy, which can be derived 
as:

xj
new,i = G

(
xj

best, σxj
best

)
� (29)

β = 1 −
[

w · t

Tmax

]
/w,� (22)

E =
√

t

Tmax
,� (23)

where Tmax denotes the maximum number of iterations; t 
indicates the present iteration number; [·] represents the 
rounding operator; w is assigned as 5.

3.3  Hard-rime Puncture Mechanism

Hard-rime forms under strong gale conditions. Its growth 
pattern is simpler and more regular compared to that of soft-
rime. The RIME algorithm leverages this phenomenon and 
introduces the hard-rime puncture mechanism, which can 
effectively enhance the convergence and avoid local optima. 
This mechanism can be mathematically expressed as:

xj
new,i = xj

best, r3 < Fnorm(xi),� (24)

where Fnorm(xi) represents the normalized fitness value of 
the ith search agent with respect to all agents, which deter-
mines the selection probability of the specific agent; r3 is a 
random number ranging between 0 and 1.

3.4  Positive Greedy Selection Mechanism

Through the positive greedy selection mechanism, the fit-
ness value of the updated search agent is evaluated in 
comparison to the previous agent. When the fitness of the 
updated agent exceeds that of the previous agent, it replaces 
the previous agent, updating both the agent and its fitness 
value. This approach incrementally improves the quality of 
the search agents, ensuring continuous population improve-
ment with each iteration.

4  Proposed TERIME Algorithm

4.1  Enhanced Exploration Approach

As mentioned in the introduction, the exploration phase 
of the RIME algorithm formulated in Eq.  (20) is associ-
ated with the current best agent. If the algorithm becomes 
trapped in a local optimum, it will be hard to escape. To 
alleviate this problem, inspired by the work of Ref. [28], we 
introduce DE mutation operators. DE mutation operators are 
common strategies for enhancing the population diversity 
of meta-heuristic algorithms [38]. By introducing variations 
through perturbation mechanism, these operators enable 
the agents to explore the search space more thoroughly and 
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Algorithm 1   Pseudocode of TERIME

5  Experimental Results

5.1  Dataset Description and Validation Schemes

In this section, I-V characteristics of three PV systems are 
introduced to implement the proposed TERIME algorithm. 
These PV datasets are widely used in the literature to assess 
parameter estimation techniques for PV models [40]. Brief 
introductions to these PV datasets is given as follows.

where G
(

xj
best, σxj

best

)
 denotes a normally distributed 

random number with a mean of xj
best and a standard devi-

ation of σxj
best; and σ is the variation coefficient, and its 

value is determined by the specific problem. In this paper, 
σ in Eq. (29) is set as 0.001. Then, the original exploitation 
phase Eq. (24) can be rewritten as:




xj
new,i = xj

i,j + C ·
(

xj
c − xj

d

)
, r3 < Fnorm(xi) and r5 ⩾ 0.5

xj
new,i = G

(
xj

best, σxj
best

)
, r3 < Fnorm(xi) and r5 < 0.5

xj
new,i = xj

i , r3 ⩾ Fnorm(xi)
� (30)

where r5 is a random number ranging between 0 and 1. 
Compared to other variants of RIME algorithm [28–32], the 
combination of crossover and Gaussian exploitation strate-
gies facilitates information exchange among agents and suf-
ficiently exploits the neighborhood of the current best agent, 
which can assist the algorithm in avoiding local optima and 
enhances the convergence speed.

4.3  Application Procedure of TERIME

With the consideration of the above improvements, the 
pseudocode of TERIME is presented in Algorithm 1, and 
the flowchart of TERIME is illustrated in Fig. 2. It is worth 
mentioning that after the exploration and exploitation 
phases, the new position of the agents might fall outside the 
boundary. In order to alleviate the early convergence issue 
resulting from the clustering of agents near the boundaries 
of the search area, we adopt the strategy advised in Ref. 
[40]. to adjust their positions, which can be expressed as:

xj
new = UBj + LBj

2
+ UBj − LBj

2
· (2γ − 1)� (31)

where γ is a random number between 0 and 1.
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Fig. 2  Flow chart of TERIME 
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these algorithms vary with each run, all the algorithms are 
independently run 100 times on each PV model. The Maxi-
mum (Max), Mean, Minimum (Min), and Standard Devia-
tion (SD) RMSE values of 100 runs are then calculated to 
assess the performance and robustness of these algorithms.

5.2  Results of RTC France PV Cell

According to the settings in Sect. 5.1, the RMSE values of 
SDM, DDM and TDM parameter extraction for RTC France 
in 100 runs are shown in Table 2. The PV parameters cor-
responding to the smallest RMSE for different algorithms 
are given in the supplementary material. From Table 2, the 
following findings could be given:

Dataset 1: a commercial solar cell RTC France, 57 mm 
in diameter, with experimental I-V data recorded at 33 °C 
under full illumination.

Dataset 2:  a poly-crystalline PV module called Photo 
Watt-PWP 201, which consists of 36 series-connected cells. 
Its experimental I-V characteristic was measured at 45 °C 
and 1000 W/m² irradiance.

Dataset 3: a poly-crystalline S75 PV module, composed 
of 36 cells in series, and its experimental I-V data were mea-
sured under varying environmental conditions. Firstly, the 
module was tested at a standard temperature of 25 °C under 
five irradiance levels: 1000 W/m2, 800 W/m2, 600 W/m2, 
400 W/m2, and 200 W/m2. Then, the test was performed at 
three different temperatures (20 °C, 40 °C, and 60 °C) under 
a standard irradiance of 1000 W/m2.

The variation range of the parameters in SDM, DDM, 
and TDM of these three PV systems is presented in Table 1 
[40], where Isc is the short circuit current of the S75 PV 
module and its calculation is described in the Appendix.

To verify the effectiveness of TERIME, two rules are fol-
lowed to choose the representative competing algorithms:

	● Variants of the RIME algorithm are considered, which 
include MRIME [28], SLCRIME [29] and SRIME [31]. 
These variants strengthen exploration [28], exploitation 
[29], or both [31], helping to demonstrate the advantag-
es of the proposed enhanced strategy.

	● State-of-the-art algorithms for PV parameter estimation 
are considered, which include DO [41], NGO [42], and 
CLRao-1 [43]. These techniques, proposed in the last 
three years, are noted for their robust performance and 
are well-suited as benchmarks for comparison.

In addition, the I-V characteristics of the PV models based 
on the parameters extracted by TERIME are compared with 
the measured values to further demonstrate its effectiveness.

In practical applications, computational cost is the pri-
mary focus in PV parameter estimation. For fair comparison, 
all the algorithms are configured with identical computa-
tional limits, setting the maximum objective function evalu-
ations Emax at 100,000 and the population size N at 20. In 
TERIME, Emax=Tmax since the objective function evaluation 
is performed once per iteration. Besides, since results from 

Table 1  Lower and upper limits for the parameters of the three PV systems
Parameters RTC France PWP 201 S75

LB UB LB UB LB UB
Iph/A 0 1 0 2 0 2Isc
Io, Io1, Io2, Io3/µA 0 1 0 10 0 1
Rs/Ω 0 0.5 0 2 0 2
Rsh/Ω 0 100 0 2000 0 5000
n, n1, n2, n3 1 2 1 2 1 4

Table 2  Comparison of RMSE results from 100 runs for the SDM, 
DDM and TDM parameter extraction of RTC France
Algorithms Model Min/10−4 Mean/10−4 Max/10−4 SD
TERIME SDM 7.730063 7.730063 7.730063 1.0e-17
RIME 7.731401 15.888173 20.833180 0.00050
SLCRIME 7.730063 7.730063 7.730084 2.5e-10
SRIME 7.743956 14.817024 23.041004 0.00041
MRIME 7.730063 7.730063 7.730063 2.8e-17
DO 7.730093 9.137755 20.574846 0.00017
NGO 7.732488 7.777358 7.989294 4.5e-06
CLRao-1 7.730063 7.730063 7.730063 2.0e-17
TERIME DDM 6.745134 6.745134 6.745134 2.0e-17
RIME 8.011388 29.400522 44.194571 0.00113
SLCRIME 6.794156 7.585225 8.032144 2.0e-05
SRIME 7.679083 13.633113 23.849559 0.00038
MRIME 6.745134 6.995867 7.952999 3.8e-05
DO 6.787838 8.894699 28.007019 0.00029
NGO 7.322259 7.974473 9.642399 2.8e-05
CLRao-1 6.745135 7.343943 7.730063 2.6e-05
TERIME TDM 5.932588 6.455588 7.298956 6.3e-05
RIME 7.144043 21.347482 55.690168 0.00136
SLCRIME 6.184865 7.508216 7.954176 2.6e-05
SRIME 7.221689 12.212359 23.507644 0.00032
MRIME 5.843708 6.625793 20.831811 0.00021
DO 6.526195 9.382817 29.922138 0.00035
NGO 7.320781 8.123815 10.323165 4.6e-05
CLRao-1 5.944958 7.309326 20.832507 0.00014
The best results among the comparative algorithms are highlighted 
in bold
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techniques. Although SLCRIME and NGO give better 
SD than that of TERIME, their Min, Mean and Max val-
ues are inferior to those of TERIME.

Then, Fig.  3 illustrates the RMSE box plots for the three 
excellent algorithms, i.e., TERIME, MRIME, and CLRao-
1. It is evident that TERIME exhibits robust results with 
good performance for all the PV models, especially for the 
DDM. However, MRIME and CLRao-1 show reduced per-
formance when the complexity of the PV model increases.

Next, Fig. 4 illustrates the average convergence of all the 
algorithms for the SDM, DDM and TDM parameter extrac-
tion. From Fig. 4, it can be found that:

	● For the SDM, TERIME converges fastest to the neigh-
borhood of the global optimum in the first 20,000 
iterations.

	● For the DDM, MRIME has the fastest convergence 
speed in the first 20,000 iterations, while TERIME out-
performs all the algorithms after 40,000 iterations.

	● For the TDM, MRIME has the fastest convergence speed 
in the first 20,000 iterations, followed by CLRao-1 and 
TERIME. However, MRIME is surpassed by TERIME 
after 70,000 iterations.

	● Among all the algorithms, RIME and SRIME are easily 
trapped in the local optimum. NGO, DO and SLCRIME 
converges slowly and fails to reach the global optima 
for the DDM and TDM. Compared to the above algo-
rithms, TERIME, MRIME and CLRao-1 have better 
performance.

In summary, the ranking of all the algorithms for DDM and 
TDM parameter extraction of RTC France is illustrated in 
Fig. 5. A smaller ranking indicates better performance. As 
shown in Fig. 5, we can conclude that TERIME is a compet-
itive algorithm with satisfactory performance and excellent 
robustness. Although TERIME’s Min ranking is worse than 
MRIME in TDM parameter extraction, TERIME achieves 
the best Mean and Max ranking in both DDM and TDM 
parameter extraction.

Subsequently, we focus on the goodness of fit between 
the calculated data obtained by the PV model and the mea-
sured one, since an accurate I-V characteristic is what we 
focus on. In order to quantify the error margins between the 
measured and calculated data, the Individual Absolute Error 
(IAE) for the output current is computed using Eq.  (32). 
Then, the IAEs of SDM, DDM and TDM for the RTC 
France obtained by the TERIME are illustrated in Fig. 6.

IAEi = |Ical,i (Vmeaure,i, θ) − Imeaure,i| .� (32)

	● For the SDM, a robust global optimum 7.730063e-4 can 
be obtained by TERIME, MRIME and CLRao-1 in all 
the 100 runs.

	● For the DDM, TERIME delivers the best results for 
Mean, Max and SD values, significantly outperform-
ing other algorithms. MRIME and CLRao-1 can give 
a global optimum in 100 runs, but their robustness is 
inferior.

	● For the TDM, MRIME gives a best Min value 5.843708e-
4 in 100 runs, followed by TERIME. However, re-
garding Mean and Max values, TERIME achieves the 
best results and is markedly superior to those of other 

Fig. 3  RMSE box plots for three excellent algorithms for parameter 
extraction of RTC France: (a) SDM; (b) DDM; (c) TDM
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Fig. 6  IAEs of SDM, DDM and TDM for the RTC France obtained by 
the TERIME

 

Fig. 5  The ranking of all the algorithms for parameter extraction on 
RTC France: (a) DDM; (b) TDM

 

Fig. 4  Average convergence performance from 100 runs for parameter 
extraction of RTC France: (a) SDM; (b) DDM; (c) TDM
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best for the parameter identification of PWP 201 in terms of 
Min, Mean and Max, demonstrating its exceptional perfor-
mance and robustness.

Next, we examine the goodness of fit between the cal-
culated data and the measured data. Figure  11 illustrates 
the IAEs of SDM, DDM, and TDM for the PWP 201 using 
parameters obtained by TERIME. It is evident that all the 
measured data are below 4e-3, irrespective of the PV model 

As can be seen in Fig. 6, the IAE for all the measured data 
remains below 1.6e-3 regardless of the PV model type, and 
is below 1e-3 for most data, indicating the effectiveness of 
TERIME. Moreover, TDM has the smallest IAE overall, 
followed by DDM and finally SDM, demonstrating that 
increasing the number of diodes enhances modeling accu-
racy in this case.

Furthermore, the calculated I-V curves from the SDM, 
DDM, and TDM using TERIME are compared with the 
measured one, as shown in Fig. 7. It can be deduced that the 
optimal parameters estimated by TERIME are very close to 
the actual cell parameters, since the calculated I-V curves fit 
nearly all the measurements.

5.3  Results of PWP 201 PV Module

The RMSE values of the SDM, DDM and TDM parameter 
extraction for the PWP 201 using different algorithms in 100 
runs are shown in Table 3. The PV parameters correspond-
ing to the smallest RMSE for different algorithms are given 
in the supplementary material. It can be seen that a robust 
globally optimal value of 1.980210e-3, 1.235854e-3 and 
1.235854e-3 can be presented by TERIME in all the 100 
runs for all the PV models. Although the performance of 
MRIME and CLRao-1 is robust for the SDM, their robust-
ness declines as PV model complexity increases.

Then, Fig. 8 displays the RMSE box plots of the three 
best algorithms for the SDM, DDM and TDM parameter 
extraction. Compared to MRIME and CLRao-1, TEMRIME 
is more robust with fewer outliers across all the PV models.

Besides, the average convergence of all the algorithms 
for the SDM, DDM and TDM parameter extraction is illus-
trated in Fig. 9. As seen in Fig. 9, the following conclusions 
can be drawn:

	● For the SDM, TERIME has the fastest convergence 
speed to the global optimum, followed by CLRao-1.

	● For the DDM, MRIME converges fastest within the 
first 20,000 iterations. Nevertheless, TERIME outper-
forms all other algorithms after approximately 40,000 
iterations.

	● For the TDM, MRIME has the fastest convergence be-
fore 80,000 iterations, followed by CLRao-1. However, 
TERIME overtakes MRIME after 80,000 iterations.

	● RIME and SRIME are easily trapped in the local opti-
mum, while DO, NGO and SLCRIME converge slowly 
and fail to approach the global optima for the DDM and 
SDM.

Based on the above results, Fig. 10 illustrates the ranking of 
all the algorithms for DDM and TDM parameter extraction 
of PWP 201. As shown in Fig. 10, TERIME is always the 

Table 3  Comparison of RMSE results from 100 runs for SDM, DDM 
and TDM parameter extraction of PWP 201
Algorithms Model Min/10−3 Mean/10−3 Max/10−3 SD
TERIME SDM 1.980210 1.980210 1.980210 1.3e-17
RIME 1.982655 2.881791 3.779420 0.00064
SLCRIME 1.980210 1.980211 1.980215 1.0e-09
SRIME 1.983797 2.632392 3.727036 0.00050
MRIME 1.980210 1.980210 1.980210 2.9e-17
DO 1.980221 2.080552 2.331327 8.6e-05
NGO 1.980507 1.985768 2.051930 7.9e-06
CLRao-1 1.980210 1.980210 1.980210 4.8e-17
TERIME DDM 1.235854 1.235854 1.235854 1.3e-17
RIME 1.553085 3.806825 6.910481 0.00158
SLCRIME 1.325982 1.507803 1.616501 6.1e-05
SRIME 1.788223 2.525695 3.574089 0.00039
MRIME 1.235854 1.257171 1.977165 0.00010
DO 1.299107 1.992142 2.445353 0.00018
NGO 1.393959 1.949974 2.369973 0.00012
CLRao-1 1.243882 1.427011 1.980210 0.00016
TERIME TDM 1.235854 1.236097 1.259446 2.3e-06
RIME 1.475659 3.093056 8.945386 0.00141
SLCRIME 1.319558 1.539146 1.684990 7.9e-05
SRIME 1.786145 2.505483 3.671453 0.00041
MRIME 1.235854 1.240255 1.276928 1.26e-05
DO 1.282257 1.947251 2.279401 0.00021
NGO 1.659848 1.954069 2.203206 0.00011
CLRao-1 1.237706 1.365158 1.703721 9.7e-05
The best results among the comparative algorithms are highlighted 
in bold

Fig. 7  Comparison of measured I-V curve and calculated ones by the 
SDM, DDM and TDM using TERIME for the RTC France
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5.4  Results of S75 PV Module under Varying 
Irradiance and Temperature

Based on the above results, the difference in the performance 
of the meta-heuristic algorithms is mainly in the parameter 
extraction of DDM and TDM. Therefore, in this subsection, 
we compare the RMSE results for parameter extraction on 
DDM and TDM under varying irradiance and tempera-
ture. Besides, instead of comparing all the algorithms as in 

type, demonstrating the effectiveness of TERIME. Interest-
ingly, while the IAE for DDM is smaller than that of SDM, 
it is almost identical to the TDM, indicating that adding 
more diodes does not always enhance model accuracy.

Additionally, the calculated I-V curves for SDM, DDM, 
and TDM with parameters extracted by TERIME are com-
pared with the measured one in Fig. 12. This comparison 
indicates that the optimal parameters estimated by TERIME 
are very close to the actual cell parameters, as the calculated 
I-V curves align closely with the measurements.

Fig. 9  Average convergence performance from 100 runs for parameter 
extraction of PWP 201: (a) SDM; (b) DDM; (c) TDM

 

Fig. 8  RMSE box plots for three excellent algorithms for parameter 
extraction of PWP 201: (a) SDM; (b) DDM; (c) TDM
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Sects.  5.2 and 5.3, we choose MRIME, and CLRao-1 for 
comparison because they always achieve remarkable per-
formance in the above PV parameter extraction task.

Firstly, the RMSE results for DDM parameter extrac-
tion of the S75 under various irradiance and temperature are 
listed in Table 4, and the corresponding RMSE box plots are 
shown in Fig. 13. From Table 4, although all the algorithms 
can give a global optima in 100 runs under all the condi-
tions except CLRao-1 at 200 W/m2 and 25  °C, TERIME 
has the best Mean, Max and SD under all the conditions, 
which showcases its superior robustness. Besides, as shown 
in Fig. 13, TERIME has fewer outliers compared to other 
algorithms under all the conditions.

Then, the RMSE results for TDM parameter extraction 
of the S75 under various irradiance and temperature are 
listed in Table 5, and the corresponding RMSE box plots 
are shown in Fig. 14. From Table 5, MRIME and TERIME 
can always give the global optima in 100 runs under all the 
conditions. Notably, TERIME has the best Max and SD 
under all the conditions, showing its extraordinary robust-
ness. Besides, as seen in Fig. 14, TERIME has fewer outli-
ers compared to other algorithms under all the conditions.

Besides, the average rankings of these three algorithms 
for parameter extraction on S75 across all the environmen-
tal conditions are illustrated in Fig.  15. It is shown that 
TERIME presents the best ranking of Mean and Max for 
both the DDM and TDM, although the ranking of Min for 
TDM is slightly inferior to MRIME. This demonstrates that 
TERIME can give a superior robust solution under varying 
environmental conditions.

5.5  Discussions of Parameter Settings

The population size and the number of evaluations sig-
nificantly influence the performance of meta-heuristic 

Fig. 12  Comparison of measured I-V curve and calculated ones by the 
SDM, DDM, and TDM from TERIME for the PWP 201

 

Fig. 11  IAEs of SDM, DDM and TDM for the PWP 201 obtained by 
the TERIME

 

Fig. 10  The ranking of all the algorithms for parameter extraction on 
PWP 201: (a) DDM; (b) TDM
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shown in Fig. 16. For DDM parameter extraction, the fol-
lowing conclusion can be drawn:

	● As the population size increases, the convergence speed 
of TERIME initially accelerates and then decreases, 
with the optimal speed observed at N = 20.

algorithms. Therefore, in this section, we focus on analyz-
ing their effects on the experimental results using the param-
eter extraction of RTC France as a case study. Again, only 
the results of DDM and TDM are analyzed.

Firstly, the average convergence performances of all the 
algorithms under different population sizes on DDM are 

Table 4  Comparison of RMSE results from 100 runs for DDM parameter extraction of S75 under varying irradiance and temperature
Algorithms G/ W m−2 T/ °C Min/10−2 Mean/10−2 Max/10−2 SD
TERIME 200 25 0.432351 0.432351 0.432351 1.27e-17
MRIME 0.432351 0.432811 0.445754 1.84e-05
CLRao-1 0.432444 0.432621 0.432773 1.30e-06
TERIME 400 25 1.102118 1.102118 1.102118 5.58e-17
MRIME 1.102118 1.102129 1.103145 1.03e-06
CLRao-1 1.102118 1.102118 1.102118 6.10e-17
TERIME 600 25 1.418367 1.418367 1.418367 7.50e-17
MRIME 1.418367 1.418368 1.418394 2.66e-08
CLRao-1 1.418367 1.418367 1.418367 7.96e-17
TERIME 800 25 1.968935 1.968935 1.968935 9.31e-17
MRIME 1.968935 1.968994 1.974749 5.81e-06
CLRao-1 1.968935 1.968935 1.968935 1.05e-16
TERIME 1000 25 1.962142 1.962257 1.969512 8.14e-06
MRIME 1.962142 1.987169 3.430604 0.00173
CLRao-1 1.962142 2.007249 2.088595 0.00019
TERIME 1000 20 1.811789 1.811789 1.811789 1.46e-16
MRIME 1.811789 1.839210 2.974532 0.00129
CLRao-1 1.811789 1.859859 2.026441 0.00066
TERIME 1000 40 1.281773 1.281773 1.281773 1.53e-16
MRIME 1.281773 1.285465 1.425530 0.00021
CLRao-1 1.281774 1.317110 1.492325 0.00052
TERIME 1000 60 2.578601 2.578601 2.578601 1.24e-16
MRIME 2.578601 2.580017 2.682043 0.00011
CLRao-1 2.578601 2.582320 2.881917 0.00031
The best results among the comparative algorithms are highlighted in bold

Fig. 13  RMSE box plots for three excellent algo-
rithms for DDM parameter extraction of S75 under 
varying irradiance and temperature
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Table 5  Comparison of RMSE results from 100 runs for TDM parameter extraction of S75 under varying irradiance and temperature
Algorithms G/ W m−2 T/ °C Min/10−2 Mean/10−2 Max/10−2 SD
TERIME 200 25 0.431861 0.431948 0.431969 2.2e-07
MRIME 0.431861 0.432303 0.432773 3.2e-06
CLRao-1 0.432247 0.432535 0.432773 9.3e-07
TERIME 400 25 1.099577 1.099577 1.099577 6.6e-17
MRIME 1.099577 1.099577 1.099577 2.8e-16
CLRao-1 1.099577 1.099577 1.099577 7.1e-17
TERIME 600 25 1.418367 1.418367 1.418367 7.8e-17
MRIME 1.418367 1.418484 1.430003 1.1–05
CLRao-1 1.418367 1.418367 1.418367 1.2e-16
TERIME 800 25 1.968935 1.968935 1.968935 8.7e-17
MRIME 1.968935 1.968993 1.974749 5.8e-06
CLRao-1 1.968935 1.998208 1.974749 5.8e-06
TERIME 1000 25 1.950811 1.959215 1.974729 4.0e-05
MRIME 1.944691 1.957261 2.094792 0.00015
CLRao-1 1.957345 2.005946 2.089124 0.00018
TERIME 1000 20 1.760594 1.771689 1.811789 0.00012
MRIME 1.760594 1.763839 1.878742 0.00015
CLRao-1 1.760594 1.864216 2.975370 0.00122
TERIME 1000 40 1.264338 1.268166 1.283026 3.4e-05
MRIME 1.264338 1.285377 1.663468 0.00079
CLRao-1 1.269061 1.310599 1.663485 0.00042
TERIME 1000 60 2.222116 2.222116 2.222116 1.5e-15
MRIME 2.222116 2.224396 2.450037 0.00023
CLRao-1 2.222116 2.262531 2.579461 0.00108
The best results among the comparative algorithms are highlighted in bold

Fig. 14  RMSE box plots for three excellent algo-
rithms for TDM parameter extraction of S75 under 
varying irradiance and temperature
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on DDM under different population sizes and number of 
objective function evaluations are illustrated in Fig.  17. 
It can be seen that when N = 20, TERIME presents better 
results compared to other population sizes. As the num-
ber of evaluations increases, the performance of TERIME 
improves. When N = 20 and Emax=100,000, TERIME gives 
the best results.

Next, the average convergence performances of all the 
algorithms under different population sizes on TDM are dis-
played in Fig. 18. For TDM parameter extraction, we can 
deduce that:

	● As the population size increases, TERIME needs more 
number of evaluations for convergence.

	● When N = 10 and N = 20, TERIME demonstrates superi-
or performance compared to other algorithms at 100,000 
evaluations of the objective function, while as N = 30 
and N = 40, its performance is inferior to MRIME due to 
limited number of function evaluations.

Subsequently, the minimum and mean values of RMSE 
from 100 runs using TERIME for parameter extraction of 
RTC France on TDM under different population sizes and 
number of objective function evaluations are illustrated in 
Fig.  19. It can be seen that as the number of evaluations 
increases, the performance of TERIME improves. When 
N = 20, TERIME presents better Min values compared to 
other population sizes. When N = 10, TERIME presents bet-
ter Mean values. If a robust result is preferred in practical 
applications, N = 10 and Emax=100,000 should be selected.

6  Conclusion

In order to tackle the robustness challenge in PV param-
eter extraction as the complexity of the PV model increases, 
an improved RIME algorithm called TERIME is proposed. 
In TERIME, the DE/rand/1 mutation operator is integrated 
into the exploration phase to enhance population diversity. 
During the exploitation phase, the crossover strategy and 
the Gaussian strategy are combined to exchange informa-
tion among agents randomly and exploit the neighborhood 
of the current best agent. The results on three PV datasets 
demonstrate that:

	● For datasets 1 and 2, TERIME consistently presents 
robust solutions as PV model complexity increases, 
with average RMSE reduction of (3.24%, 2.57%) and 
(1.70%, 0.34%) over other algorithms for (DDM, TDM) 
parameter extraction on the RTC France and PWP201, 
respectively.

	● Across all population sizes, TERIME demonstrates 
superior performance compared to other algorithms at 
100,000 evaluations of the objective function.

	● With a sufficient population size but limited evaluations 
of the objective function, TERIME performs worse than 
MRIME. However, the performance of MRIME drops 
significantly with a small population size (e.g., N = 10), 
while TERIME maintains excellent performance.

Then, the minimum and mean values of RMSE from 100 
runs using TERIME for parameter extraction of RTC France 

Table 6  Parameter values of the S75 extracted from its datasheet
Parameters Values
Isc,stc/A 4.7
kT/mA °C−1 2
Gstc/ W m−2 25
Tstc/ °C 1000

Fig. 15  Average ranking of three excellent algorithms for parameter 
extraction on S75: (a) DDM; (b) TDM
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Fig. 17  Minimum and mean values of RMSE from 100 runs using TERIME for parameter extraction of RTC France on DDM under different 
population sizes and number of objective function evaluations: (a) Min; (b) Mean

 

Fig. 16  Average convergence performance from 100 runs for parameter extraction of RTC France on DDM: (a) N = 10; (b) N = 20; (c) N = 30; (d) 
N = 40
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Fig. 19  Minimum and mean values of RMSE from 100 runs using TERIME for parameter extraction of RTC France on TDM under different 
population sizes and number of objective function evaluations: (a) Min; (b) Mean

 

Fig. 18  Average convergence performance from 100 runs for parameter extraction of RTC France on TDM: (a) N = 10; (b) N = 20; (c) N = 30; (d) 
N = 40
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	● For dataset 3, TERIME provides robust solutions under 
varying environmental conditions, achieving the best 
average rankings in Mean and Max values of RMSE for 
DDM and TDM parameter extraction.

	● Based on discussions, when using TERIME for param-
eter extraction of DDM and TDM, population size is 
suggested to be set as 10 and 20, respectively.

In summary, TERIME can serve as a reliable optimization 
tool for accurate parameter identification across various PV 
models and environmental conditions. Beyond the work of 
this study, we will extend the proposed exploitation strategy 
to other meta-heuristic algorithms. Furthermore, dynamic 
adjustment of the exploitation strategy during iterations 
is an interesting direction for enhancing the convergence 
speed of the proposed method in limited evaluations.
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