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ARTICLE INFO ABSTRACT
Keywords: Soft sensor modeling plays a crucial role in process monitoring. Causal feature selection can enhance the per-
Soft sensor formance of soft sensor models in industrial applications. However, existing methods ignore two critical char-

Causal discovery

Time delay

Convergent cross mapping
Variable selection

acteristics of industrial processes. Firstly, causal relationships between variables always involve time delays,
whereas most causal feature selection methods investigate causal relationships in the same time dimension.
Secondly, variables in industrial processes are often interdependent, which contradicts the decorrelation
assumption of traditional causal inference methods. Consequently, soft sensor models based on existing causal
feature selection approaches often lack sufficient accuracy and stability. To overcome these challenges, this
paper proposes a causal feature selection framework based on time-delayed cross mapping. Time-delayed cross
mapping employs state space reconstruction to effectively handle interdependent variables in causality analysis,
and considers varying causal strength across time delay. Time-delayed convergent cross mapping (TDCCM) is
introduced for total causal inference, and time-delayed partial cross mapping (TDPCM) is developed for direct
causal inference. Then, in order to achieve automatic feature selection, an objective feature selection strategy is
presented. The causal threshold is automatically determined based on the model performance on the validation
set, and the causal features are then selected. Two real-world case studies show that TDCCM achieves the highest
average performance, while TDPCM improves soft sensor stability and performance in the worst scenario. On
average over the two cases, TDCCM decreases root mean square error (RMSE) by about 8.93% compared with the
best existing feature selection method, and TDPCM further decreases RMSE in the worst scenario by about 7.69%
relative to TDCCM. The code is publicly available at https://github.com/dirgel/TDPCM.

modeling), and has been extensively adopted in practical industries [3].
There are two main approaches for developing soft sensor models:

1. Introduction physics-based and data-driven [3]. The first approach is effective when
the process physical mechanism is well-understood. Nevertheless, this
Monitoring, evaluating and optimizing industrial processes are prerequisite is always difficult to satisfy in actual industrial scenarios.
crucial tasks. Generally, key performance indicators (KPIs) such as Consequently, data-driven methods have emerged as vital alternatives.
product quality, energy consumption and pollutant emissions are Representative data-driven approaches include statistical models like
recorded continuously to reflect the state of the industrial process and partial least square (PLS) regression [4,5], and machine learning models
provide guidance for process control. However, as industrial processes like random forest (RF) regression [6]. Moreover, recently developed
become increasingly complex, the cost and difficulty of direct KPI deep learning methods have also been applied to soft sensor modeling,
measurement have risen, making it challenging for online monitoring such as long short-term memory (LSTM) neural network [7], convolu-
KPIs [1]. Thanks to the rapid development of the industrial internet of tional neural network [8] and variational autoencoder [9]. Although
things, collecting abundant sensor data of easily measurable auxiliary data-driven methods have significantly boosted the development of soft
variables have become feasible. By establishing mathematical relation- sensor models, the stability of these models continues to be a major
ships between auxiliary variables and KPIs, online KPI prediction can be concern for their practical application.

achieved [2]. This technique is known as soft sensing (i.e., soft sensor
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Nomenclature

List of Symbols

C Candidate set of causal thresholds for feature selection

D Number of candidates for causal threshold determination

E Embedding dimension

L Length of the time series

M Number of auxiliary variables for soft sensor modeling

N Number of historical measurements for soft sensor
modeling

My, My, Mz Trajectory matrices of X ,Y and Z

My, My, Embedding vectors of X and Y in the reconstructed space
at the time point [

/I\Z};YY Predicted embedding vectors of Y at the time point [ using
the trajectory matrix of X

A};ﬁj Predicted embedding vectors of Y at the time point [ — &
using the trajectory matrix of X considering time delay &

Q Number of disturbing variables

U, Stacked vector at time delay y for TDPCM calculation

X,Y,Z Time series variables

z Disturbing variable set

Zx Predicted time series of Z using the trajectory matrix of X

€1,C2,..., ¢p Candidates for causal threshold determination

Chest Optimal causal threshold for feature selection

d Maximum time delay considered in TDCCM/TDPCM
analysis

f Mapping function of the soft sensor model

l Generic notation for time point

tmin First valid prediction time for reconstructed series

tl Time point of the i nearest neighbor embedding vector

w; Weight assigned to the i nearest neighbor based on
Euclidean distance

x(D, y( The value of X and Y at the time point [

Yol Time series of Y from time point tp;, to time point L

Yx-v(l) Scale prediction of y(I) using the trajectory matrix of X

Aii:i Predicted time series of Y from time point t;,;, to time point

Yx-ve(l— &) Scale prediction of y(I — &) using the trajectory matrix

~XoYE
M tmin:L—¢

X2 ik by,
tnin:L—Ezx —Eyzy

I, Covariance matrix of the stacked vector U,

Q, Precision matrix corresponding to X,

Syx Set of local maxima in the TDCCM causal strength curve
from Y to X

Myx Set of local maxima in the TDPCM causal strength curve
from Y to X

y Time delay considered in TDPCM for evaluating direct
causal strength

YYx Optimal causal time delay from Y to X determined by
TDPCM

£ Generic notation for time delay

Evx Optimal causal time delay from Y to X determined by
TDCCM

Pyox Causal strength from Y to X computed by CCM

py-x:  Time-delayed causal strength from Y to X at delay &
calculated by TDCCM

Py-xz  Direct causal strength from Y to X considering Z calculated
by PCM

Py-xzy Time-delayed direct causal strength from Y to X
considering Z at delay y calculated by TDPCM

Py-xz, Time-delayed direct causal strength from Y to X
considering the set Z at delay y calculated by TDPCM

T Embedding time delay

L using the trajectory matrix of X

of X considering time delay &

Predicted time series of Y from time point t;,;, to time point
L - ¢ using the trajectory matrix of X considering time delay
¢

Predicted time series of Y from time point t,;, to time
point L —&zx —&y;, using the predicted trajectory matrix of
Z considering time delay &y , the predicted trajectory

matrix of Z is obtained using the trajectory matrix of X
considering time delay &,x

Feature selection is one of the most effective strategies for ensuring
the stability of soft sensor models, because it not only helps reveal the
underlying process mechanism but also improves model robustness and
reduces computational complexity. Existing feature selection ap-
proaches for industrial soft sensing mostly fall into three categories:

(€Y

(2)

Correlation-based methods, including techniques such as the
Pearson correlation coefficient (PCC) [10] and grey relational
analysis [11]. These methods identify auxiliary variables that are
highly correlated with KPIs, and then select them as model in-
puts. However, correlation does not always imply causation [12].
Variables that significantly affect each other may exhibit weak
correlations due to time delay, whereas highly correlated vari-
ables may lack causal relationship. Therefore, feature selection
methods based on correlation may fall short in accurately pre-
dicting KPIs.

Model training-based approaches, such as RF [13,14],
nonnegative garrote [15,16] and attention mechanisms [17].
These methods automatically assign weights to input features
during training. The weights help the model emphasize relevant
features and minimize the influence of less significant ones.
Nevertheless, these methods are highly dependent on the specific
model architecture used, which can result in inconsistent as-
sessments of feature importance across different models.

3

—

Furthermore, these techniques may still capture correlations
rather than uncovering causal relationships.

Causality-based methods, including mutual information (MI)
[18-21] and conditional mutual information (CMI) [22,23],
Granger causality (GC) [24,25] and transfer entropy (TE)
[26,27], have been employed for feature selection in industrial
processes. However, these methods exhibit several critical limi-
tations when applied to industrial soft sensor modeling:

Firstly, MI and CMI do not incorporate time delay into causal
inference. They quantify causal influence between variables at
the same time point, and therefore cannot capture causal re-
lationships that manifest with time delays. This omission is
problematic because industrial variables commonly exhibit
delayed interactions due to control feedback loops, material
transport or dynamic process responses [28,29]. As a result, MI
and CMI cannot identify causal features with meaningful time
delays.

Secondly, although GC and TE explicitly consider time delays in
causal inference, they still suffer from two major limitations. On
one hand, they rely on the decorrelation assumption, which re-
quires that the influence of a causal variable on the target can be
isolated by conditioning on other variables [30]. Real industrial
processes violate this assumption because process variables are
inherently interdependent [31]. Therefore, GC and TE may
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become unreliable in industrial processes. On the other hand, GC
and TE cannot characterize how causal strength varies across
different time delays. Both methods provide a single causal
dependence result, making it impossible to determine the specific
lag at which the causal effect is strongest or how the causal
contribution evolves with increasing delay.

These issues highlight a gap between causal inference and practical
feature selection in industrial processes and point to the need for a
method that can quantify causal influence across multiple time delays
and work reliably in interdependent industrial processes. To address this
gap, this study proposes a causal feature selection framework tailored
for industrial soft sensor modeling. The framework is supported by two
time-delayed cross mapping methods: time-delayed convergent cross
mapping (TDCCM) and time-delayed partial cross mapping (TDPCM),
designed for inferring total and direct causality for interdependent time
series across multiple time delays. Within these two methods, state-
space reconstruction is employed to handle variable interdependence.
By quantifying causal strength over lag dimensions, the framework en-
ables the selection of informative variables and their time delays.
Moreover, an objective feature selection strategy is developed, where
the causal index threshold is automatically determined using validation
performance rather than empirical rules.

The contributions of this work are summarized as follows:

e TDCCM and TDPCM are introduced for inference of total and direct
causality between interdependent industrial variables across multi-
ple time delays.

e A time-delayed causal feature selection framework tailored for in-
dustrial soft sensor modeling is proposed.

e An objective feature selection strategy based on the results of time-
delayed causal inference techniques is presented involving causal
threshold optimization.

Notably, the integration of causal inference techniques and graph
neural networks is also a notable trend in the field of soft sensor model
development [32-36]. This paper, however, focuses on feature selection
using causal inference techniques, distinguishing it from the objective of
graph neural networks, which is to further exploit spatial information
from selected features based on causal graphs.

The organization of the paper is as follows. The preliminaries of
convergent cross mapping and partial cross mapping are introduced in
Section 2. Next, the time-delayed causal feature selection framework
based on TDCCM and TDPCM is developed in Section 3. After that, the
effectiveness of the proposed method in soft sensor modeling is verified
by two engineering cases in Section 4. Subsequently, the effectiveness of
the proposed causal inference method is demonstrated by numerical
cases in Section 5. Finally, Section 6 concludes the work.

2. Preliminaries
2.1. Convergent cross mapping

The convergent cross mapping (CCM) method is grounded in the
theory of state-space reconstruction, which stems from Takens’ theorem
[37]. This theorem posits that a time series can be embedded into a
higher-dimensional space to reconstruct its dynamics. Considering two
time series X = {x(t) }-, and Y = {y(t) }-_, with length L, their state-
space reconstruction is given by:

My = [x(1),x(1 - 7),x(1 - 21),....x(1— (E— 1)
My, = [0, y(l—7),y(l—27),....y(1 - (E-1)

where Mx; and My; are the embedding vectors of X and Y in the
reconstructed space at the time point [; 7 is the time delay of embedding;
and E is the embedding dimension. For the time series with length L, 1

)]
)] !

T
T

Advanced Engineering Informatics 71 (2026) 104337

ranges from 1 +(E — 1)z to L, and totally L —(E — 1)r embedding vectors
can be constructed from the time series. Then, the trajectory matrix of X
and Y can be represented as:

My, My,
My, . My, .
My = x..ti,..,,,u My = Y,.t:n.m+1 Ctan =14 (E— 1) 2
MX.L MY.L

The trajectory matrix represents a set of sampled points constructed
from monitored time series data. All the sampled points are on a
manifold, which is a continuous structure in the reconstructed space that
captures the time-varying states of the time series. According to the
theory of CCM [30], if X is causally influenced by Y, then the manifold
of X contains information that can reconstruct the dynamics of Y. At a
specific time point [, the embedding vector of Y can be predicted via a
weighted approximation:

E+1

—~X-Y
My, = ZWiMy,zf 3
i1

where w; represents a weight determined by the distance between My;
and its i nearest neighbor embedding vector with corresponding time
point t; and My . represents the contemporaneous embedding vector of

Y at the time point t.. The weights are calculated by [30]:

d (M, My, )
Vi=exp| ——F——<% 5
d<MX,tll ) MX.Z)

where d(-, ) is the Euclidean distance between two embedding vectors;
and M. x « Tepresents the nearest embedding vector to My, across all time

points.
Subsequently, the scale prediction of y(l) can be obtained by taking
the first component of the predicted embedding vector:

W), ;

Yx-v(D) = (My,z

By performing this reconstruction for all eligible time points, the
predicted time series of Y is expressed as:

~X-Y

Yion = Fxov(tmin) Yxov (tmin + 1), .., Yxov(L) I" 7
where ?f:}; represents the predicted time series of Y from the time point
tmin to the time point L using the trajectory matrix of X.

For clarity, we write the time series X and Y in vector form as:

,X(L) ]Tnyl:L = [}’(]),y(Z),...,y(L)]T 8

Then, the causal strength from Y to X is quantified by comparing the
predicted and actual values through the Pearson correlation coefficient
[30]:

X1 = [x(1),x(2), ...

~X-Y
Py-x = PCC (y tminiL? Y tmin :L) 9

where pcc(e;, ey) denotes the PCC calculation; and py_y denotes the
total causal strength from Y to X calculated by CCM. As the time series
length L approaches infinity, py_ x will converge to a specific value. If the
convergent value exceeds the predefined threshold c, it means that Y has
a causal effect on X and vice versa. Similarly, the dynamic of X can be
predicted based on the embedding vectors of Y to detect the causal in-
fluence of X on Y.
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Fig. 1. Schematics of direct and indirect causal links. (a) Y directly causes X;
(b) Y indirectly causes X.

Auxiliary variables Yi,..., Yy
Selected features

® Predicted KPI point
Target variable X

ty

Yy

Time Y3Y4Y0

Y5
Y Auxiliary variables

ty

Fig. 2. Schematic diagram of the feature selection results.

2.2. Time-delayed convergent cross mapping

Suppose that there is a time delay ¢ in the causal relationship from Y
to X. At this point, M, is highly capable of predicting y(I — &) theoret-
ically [38], and the embedding vector of Y can be predicted as:

—xove B

M, =) wMyy, 10
i=1

where the definitions of the parameters are consistent with those in
Eq. (3). Owing to the time delay, there are L—¢—(E—1)r
predictable time points for Y. The corresponding scalar prediction

is obtained by takingthe first component of the vector:

X Y,:)
1

Vxove(l=¢) = (MY,I—g 11

Subsequently, after mapping the embedding vectors of X onto those
of Y for all eligible time points, the predicted time series of Y is expressed
as:

T
yfm"‘;ig = [}’XaY.f(tmin);.YX»Y,E(tmin + 1): "‘a.yXAY.é(L - 5)] 12
Then, by measuring the correlation between yi:‘YLf candy, . ., the
causal strength of Y on X considering a time delay & can be quantified.
This is defined as time-delayed CCM (TDCCM) [38], which can be
expressed as:

XY
Py-xe = PCC ()’zmi,, :L—f’ytmin:L—z:) 13

where py_ . denotes the total causal strength from Y to X at time delay ¢
calculated by TDCCM. When ¢ = 0, TDCCM corresponds to CCM, and Eq.
(13) is the same as Eq. (9).
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2.3. Partial cross mapping

When the system has only two variables, their causal relationship is
clearly direct. However, in a complex system with numerous variables,
there can be two types of causation: direct and indirect, as illustrated in
Fig. 1.

To distinguish direct causations from indirect ones, Leng et al. [39]
presented partial cross mapping (PCM) based on the framework of CCM.
Considering a potential disturbing time series Z = {z(t)}-,, PCM
removes the influence of Z when investigating the causal effect of Y on X.
First, the optimal time delay of the causal influence from Z to X is
determined by examining all possible time delays between variables via
Eq. (13) and selecting the time delay that exhibits the highest causal

strength [39], which can be expressed as:

Ex = argn;ﬁ)x(/’zax,g) 14
. . . . AXSZE

and the corresponding predicted time series 2, ;™%

via Eq. (12), denoted as 2}(-

Then, the optimal time delay of the influence from Y to Zyx is ob-
tained similarly by:

can be obtained

Eyz = argl?ﬁ)x (P YHZX,f) 15

. . . . ~XoZ-Yilzx Ly
and the corresponding predicted time series y, ifﬁﬂfﬁij can be
min X

derived using Eq. (12). If time series Y exhibits a high similarity with

~X=Z-Yilax bz, . .
tmin L 5”;‘ , it suggests a causal influence along Y — Z — X. Following

this, Eq. (9) can be extended as:

B XYy X2 Vi by,
Py-xiz = PPCC ylminilfizx*éy'zx 7ytmin:L’§ZX’§yZX -yfmin:Lffzx*‘fsz

16
where ppcc(er, ez|es ) denotes the partial PCC calculation quantifying
the correlation between two vectors e; and e; when considering the
vector eg; £yx denotes the optimal time delay of the causal influence
from Y to X; and py_y; denotes the direct causal strength from Y to X
considering Z calculated by PCM. If the value py_y; exceeds the pre-
defined threshold ¢, it means that Y has a direct causal effect on X
considering Z.

2.4. Problem formulation

Consider a KPI that needs to be predicted, denoted as X. The moni-
tored sensor data includes M auxiliary variables Y7, Yo, ... Yy, each of
which records historical measurements over N time points. Specifically,
for the KPI at time [, denoted as x(I), it can be predicted by:

N »nl-1) n(l-2) yi(l-N)
x()=f 17

=1 yull=2) . yull-N)

where y;(j) represents the measurement of the i auxiliary variable at
time point j; and X(j) represents the prediction of the KPI at time point j.
The aim of soft sensor modeling is to determine the mapping relation-
ship f between the auxiliary variables and the KPI. This paper focuses on
the problem of feature selection as illustrated in Fig. 2, aiming to select
features from the M x N feature set, which involves measurements of
different variables at various time points, to improve the performance
and stability of the soft sensor model.

Notably, some existing studies used historical measurements of the
KPI as input features during the operation of industrial processes
[40,41]. However, in this study, we consider the most challenging sce-
nario, where the KPI is entirely unobservable during operations, and is
only observable in the laboratory for soft sensor model establishment.
This is also the most common situation in practice.



S.-S. Chen et al.

Advanced Engineering Informatics 71 (2026) 104337

L ___
r——————-——_-—=—_——_———— I
| i, ->X L-oX
I 06 0.8 |
|
| 0.6 I
| _ 04 |
| 5 5 0.4 :
| =¥ ~
0.2
| 0.2 : ‘
I |
| 0 0 I
| 20 0 20 40 20 0 20 40
| Time Delay Time Delay :
LDirect causal strength with time delay |

Time-delayed cross mapping

|
|
|
|
:
|
|

0.2
20 0 20 40
Time Delay

0.3
20 0 20 40
Time Delay

| Change
State space reconstruction | time | Inference of total causality
| L a L T
delay
- _ _ _ ___
Y, > X noX |
0.6 0.8
(7.00,080) | |
(5.00, 0.56) |
05 0.6 |
= |
51 |
O
0.4 0.4 |
|
|
|
|
|
|

Optimal time delay identification

Time Delay

(]
Wi~ S
Validation

| |
| |
| |
| |
: WWW/V\MWW - Training :
| |
| [ | ’
| |
| |
| |
| |
| |
|

Threshold optimization

Time Delay

Fig. 3. Outline of the proposed method.

3. Methodology
3.1. Motivation

This study aims to perform feature selection on auxiliary variable
measurements recorded at multiple historical time points for soft sensor
modeling. Quantifying the causal strength of each auxiliary variable at
various time delays with respect to the current value of the KPI can
provide valuable guidance for feature selection. However, as discussed
in the introduction, existing causality-based feature selection methods
investigate causal relationships in the same time dimension. Besides,
variables in industrial processes are often interdependent, which con-
tradicts the decorrelation assumption of traditional causal inference
methods. To address these issues, we propose a causal feature selection
framework in this study based on time-delayed cross mapping.

For existing techniques, although TDCCM quantifies causal strengths
across different time dimensions, it fails to distinguish direct causal re-
lationships between variables. Consequently, TDCCM may introduce
redundant features or ignore significant features, thereby impairing the
stability of the soft sensor model. While PCM offers a way to quantify
direct causality, it focuses only on the maximum causal strength across
time delays, rather than the causal strength at specific lags, which limits
its effectiveness for guiding feature selection in the time dimension.
Therefore, in this section, we first propose TDPCM to infer direct causal
relationships at different time delays within the state space

reconstruction framework. Then, to achieve automatic causal feature
selection, an objective selection strategy is proposed involving causal
threshold optimization based on the model performance on the valida-
tion set. An outline of the proposed method is illustrated in Fig. 3.

3.2. Time-delayed partial cross mapping

In this section, we present the TDPCM to quantify direct causal
strength between interdependent time series. Without loss of generality,
we consider a system with three time series, i.e., X, Y and Z. Suppose that
Z exists in the causal path from Y to X, indicating that the causal effect of
Y on X is indirect, while that of Z on X is direct, as shown in Fig. 1 (b). At
this point, if a unique causal influence delay &yx exists for the effect of Y/
on X , then there must exist a corresponding delay &éyz on the interme-
diate path from Y to Z such that £yz < £yx. When multiple delays from Y
to X exist, there always exists at least one delay Eyx for which a corre-
sponding £yz satisfying £yz < Eyx exists. If the causal effect of Y on X can
be covered by the causal effect of Y on Z, it indicates that the causal
effect of Y on X is indirect. Based on the above analysis, by introducing
the predicted time series of Y based on Mz with the optimal time delay
Eyz, the influence of the confounding variable Z can be eliminated.

Notably, Sugihara et al. [30] pointed out that when the unidirec-
tional causal relationship between variables is excessively strong, it can
lead to a phenomenon known as synchrony. This synchrony may pro-
duce a spurious bidirectional causal link, thereby interfering with the
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Fig. 4. Flowchart of the debutanizer column.

Table 1

Monitoring variables on the debutanizer column case.
Monitoring variables Variable description Unit
U1 Top Temperature °C
U2 Top pressure kg/cm?
U3 Reflux flow m3/h
U4 Flow to next process m®/h
U5 6th tray temperature °C
U6 Bottom temperature A °C
u7 Bottom temperature B °C

Embedding Dimension E

Fig. 5. Variation of FNN with increasing embedding dimension for different
variables on the debutanizer column case.

identification of the optimal time delay with the maximum causal
strength. The TDCCM method can distinguish such spurious relation-
ships [38]. Specifically, a negative time delay at the peak of causal
strength indicates synchrony-induced false causality, whereas a delay of
zero or greater suggests a valid causal relationship at the corresponding
time lag. As a result, to mitigate the interference of synchrony, candidate
time delays are restricted to the set of local maxima of the TDCCM curve.
A local maximum at delay ¢ is defined as a point satisfying:

Py-xe > Py—xe-11 Py=xe = Py—xs1 18

Let Eyy represent the set of time lags at which the causal influence
calculated by TDCCM from Y to X reaches local maxima. Then, the
optimal time delay that has the maximum causal strength from Y to X
can be calculated by:

= 19
Eyx = arg 5;&15273(“ (p y—>x,5)

By limiting the optimal time delay to local maxima with values
exceeding zero in Eq. (19), false causal delays introduced by synchrony
at early time delays can be excluded. Similarly, the optimal time delay
from Y to Z along the causal path Y - Z — X can be determined by:

5)152 =arg max (pY—>Z./§) 20

0<é<Eyx S€8yz
where £%, is the optimal time delay from Y to Z along the causal path ¥
— Z — X, which is less than £yy.
Then, inspired by Eq. (16), the direct causal strength from Y to X at
timedelay éyx can be expressed as:

_ XY Eyy
Py-xizex = PPCC\ Yty Y tmin L&k

~ZY X
Y tin :L*ygyx ) 21

Eq. (21) indicates that if the causal influence of Y on X at the optimal
time delay £yx can be weakened by considering the causal influence of Y
on Z at the optimal time delay &}, it suggests that the causal link from Y

to X is affected by Z. Based on Eq. (21), when considering a varying
time delay y from Y to X considering Z, TDPCM can be described by:

_ ~X-Yy AZAY.g“);Z—fy;ﬁ»y
Py-xjzy = PPCC <ytmin1L*77ytmin L | Yty 22

where py_ ),  denotes the direct causal strength from Y to X considering
Z at time delay y calculated by TDPCM. TDPCM is also influenced by the
synchrony-induced false causality, therefore the direct causal influence
delay from Y to X calculated by TDPCM is determined by:

Yvx =arg max (py_y,) 23
where Ilyx represents the set of time lags at which the causal influence
calculated by TDPCM from Y to X reaches local maxima.

It should be noted that Eq. (22) only considers a single potential
disturbing variable. If N potential disturbing variables Z = {Z1, Z2, ---,
Zq} exist, TDPCM can be extended by jointly considering all the pred

icted time series obtained by disturbing variables. First, we define a st
ackedvector at time delay y as:

X
U — ~X-Yy <218y —Swtr
, =

AZN*Y-%ZN —Svxty
Ytain—r> Y twin Ly Y twin Ly

30y S tin:L—y

24

Let X, = Cov(U,) be the full covariance matrix of U, and Q, =X,
be its precision matrix. Then, TDPCM considering multiple disturbing
variables can be calculated by:
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Table 2

Coefficient of variation of auxiliary variables on the debutanizer col-

umn case.

Monitoring variables

Coefficients of variation

U1
U2
U3
U4
Us
U6
u7

0.3552
0.0430
0.3652
0.2417
0.1498
0.2266
0.2549
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Fig. 6. Causal strength of each auxiliary variable on the KPI on the debutanizer column case: (a) TDCCM; (b) TDPCM.
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Compared to PCM given by Eq. (16), TDPCM given by Egs. (22)
and (24) has the following improvements:

Py-xizy = 25

e PCM eliminates the indirect causality by considering the predicted
trajectory matrix of disturbing variables. For complex industrial
processes with numerous variables, however, it necessitates exam-
ining all possible causal paths [39], significantly increasing compu-
tational efforts. For example, if four time series W, X, Y, Z exist, when
considering the causal impact of W on Z, the following causal paths
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Fig. 7. Variation of PCM values between auxiliary variables and the KPI at the causal influence delay with increasing sample size.
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need to be considered for PCM: W > X > Z, W—>Y—>Z W->X->Y
— Zand W —» Y - X — Z. On the contrary, for TDPCM, the indirect
causality is eliminated by considering the trajectory matrices of the
disturbing variables directly, making it more suitable for applica-
tions in multivariable industrial processes. For the above example,
the following causal paths need to be considered for TDPCM: W — X
and W — Y. A comparison of their computational complexity is given
in Section 3.4.

PCM emphasizes the maximum causal strength across all time delays
rather than the causal strength at a specific one, limiting its ability to
select features from various time points. In contrast, TDPCM quan-
tifies the direct causal strength across all time delays, facilitating
causal feature selection for soft sensor modeling. Besides, the time
delay constraint in the propagation of causal influence among vari-
ables and the synchrony-induced false causality are both considered
in TDPCM.

The procedures for calculating TDCCM and TDPCM are summarized

in Algorithm 1.

Remark 1 The hyper-parameters for time-delayed cross mapping are

the embedding dimension E and the embedding time delay 7. In this
study, the embedding dimension is computationally determined using

the false nearest neighbor (FNN) method [42]. Since the sampling in-
terval of industrial time series is typically longer than its intrinsic dy-
namics, 7 is set to 1. Sensitivity analysis is also conducted in Section
4.1.4 to verify the effectiveness of parameter settings.

Remark 2: Although TDPCM relies on the partial PCC which is a
linear method, its combination with state space reconstruction is often
adequate for general industrial processes. State-space reconstruction can
transform nonlinear system dynamics into a higher-dimensional space,
in which causal relationships can be manifested in an approximately
linear form, especially for processes with smooth dynamics and rela-
tively stable operating regimes. Nevertheless, when strong nonlinear
confounding remains after reconstruction, the direct causal strength
estimated by TDPCM may be biased, and its result should be interpreted
with caution in such cases.

Algorithm 1: TDCCM and TDPCM calculation.

Input:

1. Time-series dataset containing the KPI X and auxiliary variables Y7, Y5, ... Y

2. Maximum time delay d

Output:

1. The causal strength of all auxiliary variables to the KPI across the given time delay
range as calculated by TDCCM and TDPCM

Procedure:

# Compute TDCCM for all variable pairs

1. for each ordered pair (i, k) with i # k do:

2. Compute py, via Eq. (13), £=0, ..., d

3. end for

4. for each auxiliary variable Y; do:

5. Compute py . via Eq. (13), £=0, ..., d

6. end for

# Determine optimal delays for Y; — X

7. for each auxiliary variable Y; do:

8. Determine the set of time lags Ey;x at which the causal influence calculated by
TDCCM from Y; to X reaches local maxima

9. Determine &y via Eq. (19)

10. end for

# Determine optimal delays Y; — Y; for disturbing variables

11. for each auxiliary variable Y; do:

12. Identify disturbing variable set Y\; = {Yi[i=1,...,M,i # j}

13. for each Y; € Y; do:

14. Determine the set of time lags Eyy, at which the causal influence calculated
by TDCCM from Y; to Y; reaches local maxima

15. Determine Sy via Eq. (20)

16. end for

17. end for

# Compute TDPCM considering multiple disturbing variables for Y; - X

18. for each auxiliary variable Y; do:

19. Construct stacked vector U, via Eq. (24), y=0, ..., d

SYié

(continued on next page)
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(continued)

Algorithm 1: TDCCM and TDPCM calculation.

20. Compute covariance and precision matrix
21. Compute Proxvy y=0,..,d

o
22. end for

3.3. Causal feature selection

After developing the time-delayed cross mapping techniques, the
next key issue is determining causal features for industrial soft sensor
modeling based on their results. Typically, an empirical threshold is
employed by analysts and features whose strength exceeds the threshold
are added to the inputs. However, this empirical approach depends
heavily on expert experience and is difficult to justify rigorously. If the
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threshold is set too low, redundant features may be introduced, if set too
high, critical variables may be excluded. To overcome these limitations,
we propose a data-driven method to determine the selection threshold
objectively. The available data are divided into a training set and a
validation set, where the training set is used to construct the soft sensor
model and the validation set is used to optimize the selection threshold.
The proposed method is built upon the following assumptions:

(1) Validation performance reflects feature suitability

A feature subset is considered more appropriate if it leads to better
predictive performance on the validation set. This assumption is widely
adopted in data-driven modeling and provides an objective criterion for
comparing candidate feature sets. In this study, root mean square error
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Fig. 9. Selected features of each auxiliary variable with optimized threshold on the debutanizer column case: (a) TDCCM; (b) TDPCM.
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Fig. 10. Variation of performance metrics with increasing sample size of the training set using different feature selection methods on the debutanizer column case:
(@) R? (b) RMSE (c) MAE.
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Table 3

Evaluation results of different feature selection methods on the debutanizer

column case.
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Table 5
Wilcoxon signed-rank test and median difference results of TDPCM on the
debutanizer column case.

Methods

R2

RMSE

MAE

PCC [10]
CMI [22]
RF [14]
TDGC
TDTE
TDCCM
TDPCM

Original

0.7012 + 0.0229
(0.6317, 0.7156)
0.5613 + 0.0159
(0.5399, 0.5951)
0.6501 + 0.0034
(0.6466, 0.6579)
0.6243 + 0.0217
(0.5428, 0.6540)
0.6547 + 0.0302
(0.6158, 0.7704)
0.7386 + 0.0253
(0.6783, 0.7694)

0.1056 + 0.0039
(0.1031, 0.1173)
0.1280 + 0.0023
(0.1230, 0.1311)
0.1144 £ 0.0006
(0.1131, 0.1149)
0.1185 £ 0.0033
(0.1137, 0.1307)
0.1135 £ 0.0052
(0.0929, 0.1198)
0.0987 + 0.0047
(0.0929, 0.1097)

0.7191 + 0.0039

0.1025 + 0.0007

0.0859 + 0.0042
(0.0831, 0.0988)
0.1032 £ 0.0020
(0.0990, 0.1078)
0.0937 + 0.0006
(0.0926, 0.0944)
0.0985 £ 0.0021
(0.0948, 0.1061)
0.0981 + 0.0045
(0.0803, 0.1035)
0.0819 + 0.0049
(0.0761, 0.0934)
0.0849 + 0.0007

(0.7151, 0.7284)
0.6048 + 0.0084
(0.5943, 0.6269)

(0.1008, 0.1032)
0.1215 £ 0.0013
(0.1181, 0.1232)

(0.0833, 0.0857)
0.0988 + 0.0012
(0.0959, 0.1003)

Note: The best results are highlighted in bold and the second-best results are
underlined. The maximum and minimum values are reported in parentheses,

respectively.

Table 4

Wilcoxon signed-rank test and median difference results of TDCCM on the

debutanizer column case.

Metric ~ Comparison R* R p-value Sig. (p < Median
0.001) A
R? TDCCM vs PCC 4911 240 1.29E- + 0.0405
15
R? TDCCM vs CMI 5151 0 1.35E- + 0.1867
18
R? TDCCM vs RF 5151 0 1.35E-  + 0.0942
18
R? TDCCM vs 5151 0 1.35E- + 0.1177
TDGC 18
R? TDCCM vs 5011 140 7.99E- + 0.0881
TDTE 17
R? TDCCM vs 4468 683 7.3E-11 + 0.0258
TDPCM
R? TDCCM vs 5151 0 1.35E- + 0.1372
Original 18
RMSE TDCCM vs PCC 238 4913 1.22E- + 0.0076
15
RMSE TDCCM vs CMI 0 5151 1.35E- + 0.0306
18
RMSE TDCCM vs RF 0 5151 1.35E- + 0.0166
18
RMSE TDCCM vs 0 5151 1.35E- + 0.0203
TDGC 18
RMSE TDCCM vs 151 5000 1.09E- + 0.0158
TDTE 16
RMSE TDCCM vs 665 4486  4.89E- + 0.0049
TDPCM 11
RMSE TDCCM vs 0 5151 1.35E- + 0.0236
Original 18
MAE TDCCM vs PCC 877 4274  4.4E-09 + 0.0043
MAE TDCCM vs CMI 0 5151 1.35E- + 0.0228
18
MAE TDCCM vs RF 1 5150 1.39E- + 0.0131
18
MAE TDCCM vs 0 5151 1.35E- + 0.0175
TDGC 18
MAE TDCCM vs 77 5074 1.31E- + 0.0182
TDTE 17
MAE TDCCM vs 1128 4023  4.75E- + 0.0040
TDPCM 07
MAE TDCCM vs 0 5151 1.35E- + 0.0182
Original 18
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Metric ~ Comparison R* R p-value Sig. (p < Median
0.001) A
R? TDPCM vs PCC 5150 1 1.39E- + 0.0047
18
R? TDPCM vs CMI 5151 0 1.35E- + 0.1601
18
R? TDPCM vs RF 5151 0 1.35E- + 0.0689
18
R? TDPCM vs 5151 0O 1.35E- + 0.0911
TDGC 18
R? TDPCM vs 5141 10 1.82E- + 0.0561
TDTE 18
R? TDPCM vs 5151 0 1.35E- + 0.1151
Original 18
RMSE  TDPCMvsPCC 1 5150  1.39E- + 0.0009
18
RMSE TDPCMvsCMI 0 5151  1.35E- + 0.0258
18
RMSE  TDPCM vs RF 0 5151  1.35E- + 0.0119
18
RMSE  TDPCM vs 0 5151  1.35E- + 0.0154
TDGC 18
RMSE  TDPCM vs 97 5054  2.34E- + 0.0098
TDTE 17
RMSE  TDPCM vs 0 5151  1.35E- + 0.0191
Original 18
MAE TDPCM vs PCC 2912 2239 0.8732  / -0.0010
MAE TDPCM vs CMI 0 5151  1.35E- + 0.0189
18
MAE TDPCM vs RF 0 5151  1.35E- + 0.0087
18
MAE TDPCM vs 0 5151  1.35E- + 0.0133
TDGC 18
MAE TDPCM vs 10 5141  1.82E- + 0.0123
TDTE 18
MAE TDPCM vs 0 5151  1.35E- + 0.0138
Original 18

(RMSE) is used to evaluate model performance during parameter opti-
mization. RMSE is straightforward to interpret, computationally simple,
and sensitive to outliers, making it well-suited for assessing soft sensor
models. If feasible, other performance metrics can also be considered as
alternatives.

(2) Stronger causal strength implies greater relevance

A larger causal strength indicates a stronger causal effect of an
auxiliary variable on the KPI at a particular time delay. Therefore, fea-
tures associated with higher causal strength should be prioritized in the
selection process.

(3) The soft sensor model is deterministic without inherent
uncertainty

Given a fixed input feature set, soft sensor provides a deterministic
prediction of the KPIL. This assumption ensures that model performance
reflects the suitability of the chosen features rather than stochastic ef-
fects arising from model uncertainty. Consequently, the validation per-
formance can be reliably used to optimize the causal strength threshold.
In this study, due to the generally limited data available for soft sensor
modeling and the repeated training required to determine optimal
setting values, PLS is employed because it trains quickly and has
demonstrated reliable performance in soft sensor modeling [4,5]. If
feasible, other models can also be considered as alternatives. For other
regression models that involve inherent uncertainty, such as deep
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Fig. 11. Comparison between predicted and actual values for each method on the debutanizer column case.

learning models, how to combine time-delayed cross mapping methods
with them into the design of soft sensors will be a key focus of future
research. Model adaptability analysis is also conducted in Section 4.1.4
using Gaussian-kernel support vector regression.

(4) Historical measurements preceding the causal delay do not
contribute to the KPI

Historical measurements with time lags shorter than the causal in-
fluence delay identified by time-delayed cross mapping methods are
assumed not to affect the KPI. For example, if variable Y affects variable
X at a lag of five time steps, then measurements of Y at time delays one to
four relative to time point [ do not contribute to predicting x(I). This
assumption prevents the inclusion of non-informative or weakly related
measurements during feature selection. Ablation study on this constraint
is also conducted in Section 4.1.4.

Based on the above assumptions, the feature set is constructed based
on causal threshold optimization, which consists of continuous histori-
cal measurements of each auxiliary variable starting from the identified
causal time delay. The procedures for feature selection are presented as

12

follows:

Step 1: Initialization. Split the given dataset into training and vali-
dation sets. Specify the maximum time delay d and the value space for
the index threshold as C = {c, ¢, ..., cCp}.

Step 2: Feature set construction. For each index threshold c; the
continuous historical measurements of auxiliary variables with TDPCM
values greater than c; and time delays larger than causal influence delay
are selected as model inputs for soft sensor modeling. A soft sensor
model is then constructed using the training set, and its performance is
evaluated on the validation set to obtain the performance corresponding
to ¢;. After evaluating the model performance across all possible index
thresholds, the threshold that yields the best performance is selected as
the optimal index threshold, denoted cpes. And, the features selected
based on cpes constitute the feature set.

The above feature selection procedures are summarized in Algorithm
2.

Remark 3 A predefined threshold candidate set C is required before
training. To construct this, we propose a simple and objective approach:
select D — 1 equally spaced values between the lowest and highest
TDPCM values obtained across all auxiliary variables, and additionally
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Table 6
Selected features of different methods on the debutanizer column case.—
Methods U1l U2 u3 U4
PCC / 1-50 1-50 /
CMI 1-49 / 1-49 1-49
RF 1,3,5,9,11,13,15-16, 19 - 20, 22 — 24, 30 - 31, 39, 66, 72, 77, 79, / 2-18, 22, 28 - 30, 62, 1,5-6,9,11 -14, 21, 24 - 27, 29 - 38, 50, 52, 76 —
81 - 82, 88,91 -93, 97, 100 78 - 79, 96 77,82 - 83, 89 - 100
TDGC 7 - 62 13- 5-42 12 -60
100
TDTE 13-69 / / 51 -100
TDCCM 8-26 / 11-38 31-52
TDPCM 6 -100 27 -58 10 - 100 23-100
Original 1-100 1-100 1-100 1-100
Methods U5 U6 u7 Total number
PCC 1-50 1-50 1-50 250
CMI 1-49 1-49 1-49 294
RF 1-2,11-16,18-20, 22 - 24, 30, 43 - 44, 59, 65, 68,70 - 71, 74, 80, 60 52, 64, 89 125
91, 95, 100
TDGC 7 - 100 7-23 7 - 100 436
TDTE 6-14 / / 116
TDCCM 9-38 26-28 24 - 26 105
TDPCM 7 -42 9-24 10-19 358
Original 1-100 1-100 1-100 700
Table 7 (continued)

Evaluation results based on TDCCM under different parameter settings on the
debutanizer column case.

Parameter settings

R2

RMSE

MAE

E=3,7=1 0.7243 + 0.0330 0.1013 £ 0.0060 0.0840 + 0.0064
E=4r71=1 0.7386 + 0.0253 0.0987 + 0.0047 0.0819 + 0.0049
E=51=1 0.7359 + 0.0295 0.0992 + 0.0055 0.0823 + 0.0057
E=671=1 0.7355 + 0.0263 0.0989 + 0.0042 0.0820 + 0.0039
E=471=2 0.7203 + 0.0133 0.0996 + 0.0026 0.0839 + 0.0019
E=4,7=3 0.7191 + 0.0153 0.1049 + 0.0020 0.0851 + 0.0020
E=4,71=4 0.6832 + 0.0307 0.1088 + 0.0049 0.0898 + 0.0051
Table 8

Evaluation results based on TDPCM under different parameter settings on the
debutanizer column case.

Parameter settings

RZ

RMSE

MAE

E=3,7=1 0.7017 + 0.0684 0.1049 + 0.0120 0.0902 £ 0.0125
E=4,7=1 0.7191 + 0.0039 0.1025 + 0.0007 0.0849 £ 0.0007
E=57=1 0.6684 + 0.0342 0.1112 4+ 0.0056 0.0945 + 0.0040
E=6,7=1 0.7094 + 0.0200 0.1032 + 0.0037 0.0845 £ 0.0041
E=4,1=2 0.6100 + 0.0153 0.1207 + 0.0023 0.0977 £ 0.0019
E=4,71=3 —0.0976 + 0.0069 0.2026 + 0.0006 0.1552 £ 0.0008
E=471=4 0.0255 + 0.0950 0.1907 + 0.0092 0.1487 + 0.0048

include the maximum TDPCM value for each individual auxiliary vari-
able. This approach integrates a global perspective while simultaneously
capturing local characteristics. As a result, the constructed threshold
space is both comprehensive and representative, facilitating effective
feature selection.

Algorithm 2: Feature selection based on the results of time-delayed cross mapping.

Input:

1. Time-series dataset containing the KPI X and auxiliary variables Y3, Y, ...

2. Threshold candidate set C = {cy, ca,..., cp}

3. Maximum time delay d

4. TDCCM and TDPCM values from all auxiliary variables to the KPI across given
time delays

Output:

1. Selected features for soft sensor modeling

Procedure:

1. for each index threshold ¢; € C do:

2. Initialize selected feature set .7 (c;) <@

3. for each auxiliary variable Y; do:

4. Determine the causal influence delay §; via Eq. (19) for TDCCM and Eq. (23)
for TDPCM

5. Set y « 6

Ym

(continued on next column)
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Algorithm 2: Feature selection based on the results of time-delayed cross mapping.

6. while y <dand py_x,>ci for TDCCM, or y < dand /’Y—»X|Y,;y>Ci for TDPCM do
7. Fe) =T (c) U {_yj([ —7) }

8. vy +1

9. end while

10. end for

11. Train a soft sensor model using .7 (c;) on the training set

12. Evaluate its performance on the validation set and record the score J(c;)

13. end for

14. Select the optimal threshold cpesr = argmig.](ci)
Ci €

15. Return the final selected feature set .7 (Cpest)

3.4. Complexity analysis

First, the computational complexity of TDCCM is analyzed. For a
single TDCCM computation at a given time delay, E + 1 nearest neigh-
bors are identified in the reconstructed space for each embedding vector,
and the effective number of embedding vectors approaches L* =
L —(E — 1)7. Therefore, considering d + 1 different time delays, the
complexity per variable pair scales as O(dEL*). The construction of
trajectory matrices and the calculation of PCC introduce additional
computational costs of O(L*) per time delay, which are negligible
compared to the nearest neighbor search. Since there are M auxiliary
variables in total, the overall computational complexity of TDCCM is O
(M2dEL*). In practice, since E is usually much smaller than L*, the
complexity can be approximately regarded as O(M2dL*).

After performing TDCCM analysis, the optimal delays between var-
iables are selected. Then, TDPCM employs the PPCC to calculate the
direct causal strength between auxiliary variables and the KPI. Since the
costs of delay selection and PPCC computation are negligible, the overall
computational complexity of the TDPCM is dominated by that of
TDCCM.

Table 9
Evaluation results of deep learning method comparisons on the debutanizer
column case.

Methods R* RMSE MAE

TDCCM 0.7386 + 0.0253 0.0987 + 0.0047 0.0819 =+ 0.0049
TDPCM 0.7191 + 0.0039 0.1025 + 0.0007 0.0849 + 0.0007
LSTM 0.4180 + 0.1043 0.1469 + 0.0126 0.1106 + 0.0120
GRU 0.2757 + 0.1347 0.1639 =+ 0.0147 0.1171 £ 0.0134
Transformer 0.2954 + 0.1167 0.1618 + 0.0132 0.1249 + 0.0133
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Table 10

Evaluation results of model adaptability analysis using SVR on the debutanizer

column case.

Methods

R2

RMSE

MAE

PCC
[10]
CMI
[22]
RF [14]
TDGC
TDTE
TDCCM
TDPCM

Original

0.3809 + 0.0106
(0.3601, 0.3962)
0.1985 + 0.0076
(0.1766, 0.2143)
0.5888 + 0.0131
(0.5698, 0.6403)
0.2835 + 0.0231
(0.2294, 0.3057)
0.4267 + 0.0242
(0.3853, 0.4547)
0.6538 + 0.0176
(0.6080, 0.6717)
0.6333 + 0.0119
(0.6191, 0.6587)
0.6058 + 0.0083
(0.5945, 0.6269)

0.1521 £ 0.0013
(0.1502, 0.1547)
0.1731 + 0.0008
(0.1714, 0.1754)
0.1240 =+ 0.0020
(0.1160, 0.1268)
0.1636 + 0.0026
(0.1611, 0.1697)
0.1464 + 0.0031
(0.1428, 0.1516)
0.1137 + 0.0028
(0.1108, 0.1211)
0.1192 + 0.0018
(0.1155, 0.1208)
0.1214 £ 0.0013
(0.1181, 0.1231)

0.1111 + 0.0013
(0.1090, 0.1132)
0.1285 + 0.0015
(0.1252, 0.1317)
0.0980 + 0.0026
(0.0886, 0.1025)
0.1202 + 0.0018
(0.1182, 0.1289)
0.1203 + 0.0023
(0.1166, 0.1254)
0.0909 =+ 0.0022
(0.0886, 0.0965)
0.0935 & 0.0017
(0.0888, 0.0953)
0.0987 + 0.0012
(0.0959, 0.1003)

Note: The best results are highlighted in bold and the second-best results are
underlined. The maximum and minimum values are reported in parentheses,
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Table 11
Evaluation results of the ablation study on the causal influence delay constraint
on the debutanizer column case.

Methods R? RMSE MAE
TDCCM (original) 0.7386 + 0.0987 + 0.0819 +
0.0253 0.0047 0.0049
TDPCM (original) 0.7191 + 0.1025 + 0.0849 +
0.0039 0.0007 0.0007
TDCCM (lag 0.7308 + 0.1002 + 0.0834 +
extension) 0.0223 0.0041 0.0036
TDPCM (lag 0.6853 + 0.1082 + 0.0912 +
extension) 0.0468 0.0079 0.0070
Table 12

Empirical wall-clock times for the four causal
inference methods on the debutanizer column

case.
Methods Runtime (s)
TDGC 0.326
TDTE 176.046
TDCCM 853.170
TDPCM 855.241




S.-S. Chen et al.

Advanced Engineering Informatics 71 (2026) 104337

ST .
S5
-------- ©
S8 |
52 —] s
—Dd—] b [ 5
S9 ! !
'y 1 S1 S3 |
1 ) 1
€46 '
: -®
|
1 S4 '
: L] | - :
! | | |——| >le 1 S10
' =
|
i S6
Fig. 14. Flowchart of the CSTR.
Table 13 100 r o)
Monitoring variables on the CSTR case. g
Monitoring variables ~ Variable description Unit 30
S1 Liquid level in the reactor m
S2 Coolant flow rate L/
min o 60 +
S3 Coolant temperature in the cooling jacket K é
S4 Reactor temperature K Z,
S5 Feed flow rate of the reactor feed stream L/ Z 4 0
min [ i
S6 Outlet flow rate of the reactor L/
min
S7 Reactant concentration in the reactor feed stream  mol/L 20 1
S8 Reactor feed temperature K
S9 Inlet coolant temperature K
0
0

Fig. 15. True causal network of the CSTR system.

Then, we analyze the computational complexity of the feature se-
lection strategy. Let the computational complexity of a single training
and validation of the soft sensor model with m input features be denoted
as Tmodel(m). In Step 2, the soft sensor model is trained and validated for
each candidate threshold c;. A total of k model training and validation
operations are conducted in this step. Therefore, the computational
complexity of the proposed feature selection strategy is O(kTmoger(M) ),
where m represents the average number of selected features after
screening.

Remark 4 If the original calculation method of PCM is used, where
the predicted trajectory matrix of disturbing variables must be con-
structed, additional steps are required, including nearest-neighbor
searches and exploration of all possible causal paths. For a system
with M variables, the maximum depth of a causal path can reach M — 2.

15

Embedding Dimension E

Fig. 16. Variation of FNN with increasing embedding dimension for different
variables on the CSTR case.

At this point, after performing TDCCM analysis, the computational
complexity of PCM becomes O(M™~2dL*) when considering all time
delays, which is much higher than the computational complexity of the
proposed method.

4. Experiments

In this section, two real-world industrial cases are introduced to
implement the proposed method. To show the superiority of the pro-
posed feature selection method based on time-delayed cross mapping,
the following methods are employed for comparison:

e Feature selection approaches that ignore the impact of time delay,
including correlation-based method PCC [10] and causality-based
method CMI [22]. For both methods, it is necessary to determine
appropriate threshold values for their respective metrics, as well as
the time range to be considered. These parameters are optimized
based on the model performance on the validation set.
State-of-the-art model training-based feature selection method RF
[14]. For this method, we rank the feature importance and select
features based on the model performance on the validation set.
e Feature selection approaches based on baseline time-series causal
inference methods with the time-delay framework, including TDGC
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Fig. 17. Causal strength of each auxiliary variable on the KPI on the CSTR case: (a) TDCCM; (b) TDPCM.

and TDTE. For these methods, the proposed feature selection strategy
is employed.

e Original soft sensor model without any feature selection methods,
which is also known as the sliding window technique for time series
prediction [43].

The implementation details of all the feature selection methods are
provided in Appendix A. In order to compare the performance of soft
sensor models, three widely used metrics are employed: coefficient of
determination (RZ), RMSE and mean absolute error (MAE). For all the
feature selection methods, PLS is used for soft sensor modeling.

4.1. Debutanizer column

4.1.1. Dataset description

The debutanizer column plays an important role in petroleum
refining, particularly in naphtha cracking and desulfurization. The
flowchart of the debutanizer column is illustrated in Fig. 4, with detailed
descriptions of monitoring variables provided in Table 1. Specifically,
Ul represents the temperature at the top of the column, directly
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influencing vapor composition and condensation behavior. U2 indicates
the pressure at the overhead of the column, affecting both the purity of
separated products and overall separation efficiency. U3 controls the
liquid reflux returned to the column, significantly impacting product
purity and operational stability. U4 describes the rate at which the top
product is transferred to subsequent refining stages, reflecting process
throughput. U5 provides a mid-column temperature reading, which can
be regarded as a sensitive indicator of internal separation efficiency and
composition gradients. U6 and U7 measure temperatures in the bottom
section of the column. These are essential for managing the vaporization
conditions and ensuring the minimized butane content.

Minimizing the butane content in the bottom of the distillation col-
umn is crucial for enhancing product quality. However, in practical
applications, the gas chromatography method commonly used to mea-
sure butane content suffers from significant time delays, which impedes
real-time system control and thus affects product performance. There-
fore, it is necessary to establish a soft sensor model to estimate butane
content online. To achieve this, the above seven easily measurable
auxiliary variables physically related to the butane content are recorded,
denoted as U1-U7, and the butane content is denoted as U8, which is the
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KPI to be predicted. Further details on debutanizer column can be found
in [44].

In this study, there are a total of 2194 samples gathered from the
process, sourced from [44]. The first 1596 samples are used for causal
inference and model establishment, and the remaining 598 samples are
reserved for model testing. Before analysis, all variables are scaled using
min-max normalization.

4.1.2. Causal inference

As stated in Remark 1, the hyper-parameters for causal inference
based on time-delayed cross mapping are the embedding dimension E
and the embedding time delay 7, where E is determined according to the
FNN method, and 7 is set to a default value of 1. Fig. 5 shows the vari-
ation of the FNN with the embedding dimension for all the variables in
the debutanizer column case. An embedding dimension of E = 4 is
selected, as it is the first dimension at which all FNN values drop below
5 %.

Then, according to Algorithm 1, the causal inference results of
TDCCM and TDPCM can be obtained. A negative lag search window of
50 is employed to identify potential synchrony-induced false causality.
Fig. 6 presents the causal strength with time delay of each auxiliary
variable on the KPI as calculated by TDCCM and TDPCM. It indicates

(b)

Fig. 18. Selected features of each auxiliary variable with optimized threshold on the CSTR case: (a) TDCCM; (b) TDPCM.
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that U1, U3 and U5 have strong causal impacts on the KPI, whereas U2,
U4, U6 and U7 show relatively weak causal relationships. This result can
be explained by process knowledge: Ul reflects the extent of butane
removal; U3 determines the efficiency of mass transfer, which governs
the separation process; and U5 provides information about the compo-
sition variation. They all have strong causal impacts on the KPI. In
contrast, U6 and U7 are influenced by the KPI rather than affecting it,
resulting in weak causal impacts. Although U2 is theoretically expected
to have a strong causal impact on the KP], its influence is not detected.
This is likely because U2 is tightly constrained in the process, exhibiting
very limited variability. As listed in Table 2, the coefficient of variation
of U2 is only 0.043, far below those of other auxiliary variables.
Compared with TDCCM, the causal strength of U3 and U5 calculated by
TDPCM remains unchanged, indicating that their impacts on the KPI are
predominantly direct. The above analysis demonstrates that the causal
inference results show satisfactory consistency with the process
knowledge.

Fig. 7 illustrates how PCM values between auxiliary variables and the
KPI at the causal influence delay vary with increasing sample size. From
Fig. 7, all auxiliary variables tend to converge toward stable values,
showing the robustness of the causal inference results.



S.-S. Chen et al.

PCC
0.8
M
0.6
(o]
~ 0.4
0.2
0
1000 1100 1200 1300
Sample size
TDTE
0.8
0.6
(o}
~ 0.4
0.2 —

0
1000 1100 1200 1300
Sample size

PCC

0.16
0.14
2 0.12
~ 0.1
0.08

0.06
1000 1100 1200 1300

Sample size

W

TDTE
0.16 N
0.14
E 0.12
~ 0.1
0.08

0.06
1000 1100 1200 1300
Sample size

PCC

0.15

MAE

0.1

W

0.05
1000 1100 1200 1300

Sample size
TDTE
’——-N\P

0.15

0.1

MAE

0.05
1000 1100 1200 1300
Sample size

(c) MAE.

Advanced Engineering Informatics 71 (2026) 104337

CMI RF TDGC
08— ] 08 0.8
0.6 0.6 0.6
(o] (o] (o]
~ 0.4 ~ 0.4 W ~ 0.4 \, / ‘(
0.2 0.2 0.2
0 0 0
1000 1100 1200 1300 1000 1100 1200 1300 1000 1100 1200 1300
Sample size Sample size Sample size
TDCCM TDPCM original
0.8 0.8 0.8
0.6 0.6 0.6
o (o} o
~ 0.4 ~ 0.4 ~ 0.4
0.2 0.2 027 IV

0
1000 1100 1200 1300
Sample size

0
1000 1100 1200 1300
Sample size

(a)

CMI
0.16
0.14
©0.12
~ 0.1
0.08 W

0.06
1000 1100 1200 1300

Sample size
TDCCM

0.16
0.14

2 0.12

=

& 0.1
0.08

0.06
1000 1100 1200 1300
Sample size

0
1000 1100 1200 1300
Sample size

RF TDGC
0.16 0.16
0.14 0.14 ~ A
W m
©£0.12 ©£0.12
~ 0.1 ~ 0.1
0.08 0.08
0.06 0.06
1000 1100 1200 1300 1000 1100 1200 1300
Sample size Sample size
TDPCM original
0.16 0.16
0.14 0.14 NANNA~—~—T
©£0.12 ©£0.12
= =
~ 0.1 ~ 0.1
0.08 M_,V/"\ 0.08

0.06
1000 1100 1200 1300
Sample size

(b)

CMI

0.15

MAE

0.1

M\—-’/

0.05
1000 1100 1200 1300
Sample size
TDCCM

0.15

0.1

MAE

0.05
1000 1100 1200 1300
Sample size

0.06
1000 1100 1200 1300
Sample size

RF TDGC
0.15 0.15
W __/\MA
< <
s o1 S ol
0.05 0.05
1000 1100 1200 1300 1000 1100 1200 1300
Sample size Sample size
TDPCM original
0.15 015 | A e
< <
S o1 S o1

0.05
1000 1100 1200 1300
Sample size

(©)

Fig. 19. Variation of performance metrics with increasing sample size of the training set using different feature selection methods on the CSTR case: (a) R? (b) RMSE

18

0.05
1000 1100 1200 1300
Sample size



S.-S. Chen et al.

Table 14
Evaluation results of different feature selection methods on the CSTR case.
Methods R? RMSE MAE
PCC [10] 0.6711 + 0.0172 0.0951 + 0.0025 0.0750 + 0.0025
(0.6378, 0.6933) (0.0919, 0.0998) (0.0716, 0.0794)
CMI [22] 0.7276 + 0.0250 0.0865 + 0.0039 0.0677 + 0.0034
(0.6771, 0.7538) (0.0823, 0.0943) (0.0638, 0.0743)
RF [14] 0.3975 + 0.0131 0.1287 + 0.0014 0.1038 + 0.0012
(0.3776, 0.4151) (0.1269, 0.1309) (0.1024, 0.1056)
TDGC 0.4250 + 0.0486 0.1257 + 0.0050 0.0989 + 0.0043
(0.2359, 0.4624) (0.1216, 0.1450) (0.0958, 0.1153)
TDTE 0.0949 + 0.0560 0.1577 + 0.0049 0.1293 + 0.0034
(0.0354, 0.1812) (0.1501, 0.1629) (0.1240, 0.1327)
TDCCM 0.7852 + 0.0342 0.0767 + 0.0058 0.0609 + 0.0051
(0.7000, 0.8163) (0.0711, 0.0908) (0.0561, 0.0741)
TDPCM 0.7735 + 0.0123 0.0789 + 0.0021 0.0614 + 0.0017
(0.7546, 0.7902) (0.0760, 0.0822) (0.0590, 0.0641)
Original 0.2813 + 0.0329 0.1406 + 0.0032 0.1116 + 0.0027

(0.2344, 0.3347) (0.1353, 0.1451) (0.1071, 0.1153)

Note: The best results are highlighted in bold and the second-best results are
underlined. The maximum and minimum values are reported in parentheses,
respectively.

Table 15
Wilcoxon signed-rank test and median difference results of TDCCM on the CSTR
case.

Metric ~ Comparison R* R p-value Sig. (p < Median
0.001) A

R? TDCCM vs PCC 231 0 3.21E-05 + 0.1256

R? TDCCM vs CMI 221 10 0.000131 + 0.0661

R? TDCCM vs RF 231 0 3.21E-05 + 0.3958

R? TDCCM vs 231 0 3.21E-05 + 0.3690
TDGC

R? TDCCM vs 231 0 3.21E-05 + 0.7174
TDTE

R? TDCCM vs 166 65 0.04112 / 0.0160
TDPCM

R? TDCCM vs 231 0 3.21E-05 + 0.5128
Original

RMSE TDCCM vs PCC 0 231 3.21E-05 + 0.0204

RMSE TDCCM vs CMI 9 222 0.000115 + 0.0117

RMSE  TDCCM vs RF 0 231  3.21E-05 + 0.0538

RMSE TDCCM vs 0 231 3.21E-05 + 0.0515
TDGC

RMSE  TDCCM vs 0 231  3.21E-05 + 0.0825
TDTE

RMSE  TDCCM vs 61 170 0.03027 / 0.0030
TDPCM

RMSE TDCCM vs 0 231 3.21E-05 + 0.0665
Original

MAE TDCCM vs PCC 1 230  3.71E-05 + 0.0154

MAE TDCCM vs CMI 19 212 0.000424  + 0.0081

MAE TDCCM vs RF 0 231 3.21E-05 + 0.0445

MAE TDCCM vs 0 231 3.21E-05 + 0.0398
TDGC

MAE TDCCM vs 0 231 3.21E-05 + 0.0696
TDTE

MAE TDCCM vs 86 145 0.1567 / 0.0011
TDPCM

MAE TDCCM vs 0 231 3.21E-05 + 0.0522
Original

4.1.3. Soft sensor modeling results and comparisons

Time-delayed causality analysis introduces a temporal shift between
the auxiliary variables and the KPI. With a maximum time delay d of
100, the first 100 samples of KPI cannot be labeled because the corre-
sponding historical measurements of auxiliary variables are unavailable.
As a result, 1496 effective labeled samples are available for model
development. When developing soft sensor models, it is essential to
confirm that the model trained on the training set maintains satisfactory
performance on unseen future data. However, the training and valida-
tion sets are always divided randomly in practice, which can influence
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Table 16
Wilcoxon signed-rank test and median difference results of TDPCM on the CSTR
case.

Metric ~ Comparison R* R p-value Sig. (p < Median
0.001) A
R? TDPCM vs PCC 231 0 3.21E- + 0.0998
05
R? TDPCM vs CMI 231 0 3.21E- + 0.0392
05
R? TDPCM vs RF 231 0 3.21E- + 0.3706
05
R? TDPCMvsTDGC 231 O 3.21E- + 0.3428
05
R? TDPCM vs TDTE 231 0 3.21E- + 0.687
05
R? TDPCM vs 231 0 3.21E- + 0.4991
Original 05
RMSE TDPCM vs PCC 0 231 3.21E- + 0.0162
05
RMSE TDPCM vs CMI 0 231 3.21E- + 0.0066
05
RMSE TDPCM vs RF 0 231 3.21E- + 0.049
05
RMSE  TDPCMvsTDGC 0 231  3.21E- + 0.0458
05
RMSE  TDPCMvs TDTE 0 231  3.21E- + 0.0786
05
RMSE TDPCM vs 0 231 3.21E- + 0.0626
Original 05
MAE TDPCM vs PCC 0 231  3.21E- + 0.013
05
MAE TDPCM vs CMI 0 231 3.21E- + 0.0056
05
MAE TDPCM vs RF 0 231 3.21E- + 0.0418
05
MAE TDPCMvsTDGC 0 231  3.21E- + 0.0365
05
MAE TDPCM vs TDTE 0 231 3.21E- + 0.0676
05
MAE TDPCM vs 0 231  3.21E- + 0.0509
Original 05

the model performance. If the model results are significantly affected by
the dataset division, it suggests weak model stability and introduces
substantial risks in practical applications. To systematically evaluate the
stability of different methods, we vary the sizes of the training set from
1000 to 1400 samples in steps of 1, while keeping the total number of
training and validation samples fixed at 1496. Notably, to avoid infor-
mation leakage in the prediction task, the time series samples are not
shuffled. Instead, a chronological cutoff point is selected on the time
axis, and all observations before the cutoff form the training set while
the remaining observations form the validation set. In this way, the
temporal order of the data is strictly preserved, and models are always
trained on past data and validated on future data. Taking a training set
sample size of 1350 as an example, the data division strategy is shown in
Fig. 8. The test set corresponds to the last segment of the time series and
is used only for final performance evaluation, after causal feature se-
lection, threshold determination and hyper-parameter tuning have been
completed.

For model establishment, PLS is used for soft sensor modeling com-
bined with a specific feature selection method, with n_components = 3.
The causal features are selected according to Algorithm 2. Taking a
training set sample size of 1350 as an example, Fig. 9 highlights the
selected features with the optimized index threshold by TDCCM and
TDPCM. It can be seen that features from U1, U3, U4 and U5 are selected
across a long time range, while features from other auxiliary variables
are selected in a limited time range. Notably, some features from U6 and
U7 are included, possibly due to their relevance to the historical state of
the KPIL.

The performance metrics on the test set with increasing sample size
of the training set using different feature selection methods are shown in
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Fig. 20. Comparison between predicted and actual values for each method on the CSTR case.

Fig. 10. It can be seen that the performance on the test set does not
monotonically increase with larger training set sizes but instead fluc-
tuates for several feature selection methods. This behavior is primarily
due to the presence of irrelevant or weakly relevant features. When
feature selection fails to effectively remove disturbing or weakly rele-
vant lagged measurements, the resulting models become sensitive to
redundant or interfering information [45]. In such cases, different train-
validation splits may include different subsets of these features, which
leads to oscillatory performance curves. Overall, models based on RF
and TDPCM exhibit greater stability compared to other feature selection
methods, stabilizing around a sample size of 1300. By comparison, the
performance of other feature selection methods is affected by the dataset
division, resulting in relatively poor model stability.

Table 3 presents the average performance, standard deviation, the
worst performance and the best performance on the test set using
different feature selection methods when the sample size of the training
set exceeds 1300. For model average performance, the performance of
CMI is worse than that of other causal feature selection methods and the
original model, demonstrating the critical role of incorporating time
delay in identifying causal features. PCC demonstrates strong model
accuracy, which suggests that correlation-based approaches may

20

sometimes be suitable for feature selection. Compared to TDGC, which
focuses on linear relationships, TDTE performs better by capturing
nonlinear relationships. However, the performance of TDTE is still
inferior to that of TDCCM due to its dependence on the decorrelation
assumption, which shows the superiority of the state space
reconstruction-based causal inference techniques in industrial pro-
cesses. Among all methods, TDCCM achieves the best average perfor-
mance, followed by TDPCM. Compared with the existing best method
PCC, TDCCM yields a 5.33 % increase in R?, along with 6.53 % and 4.66
% reductions in RMSE and MAE, respectively. For model uncertainty,
the standard deviation of RF is the best, followed by TDPCM. As the
method with minimal risk, TDPCM achieves a 5.43 % increase in R% and
reductions of 5.93 % in RMSE and 8.24 % in MAE compared to the
second-best method TDCCM in the worst scenario. Overall, the feature
selection methods based on time-delayed cross mapping techniques
achieve superior average performance and stability compared to exist-
ing feature selection methods.

To statistically assess the performance differences between the pro-
posed feature selection methods and the baseline approaches, the Wil-
coxon signed-rank test is employed [46] using paired results obtained
under identical training-validation configurations. The analysis focuses
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Table 17

Selected features of different methods on the CSTR case.
Methods S1 S2 S3 S4 S5
PCC 1-12 1-12 1-12 1-12 1-12
CMI 1-13 1-13 1-13 1-13 1-13
RF 7,9,17, 21, 26, 36, 47, 70, 74 1-2,19, 31, 34 - 35, 84, 94, 96, 98, 100 1-2,31 1-2,28,43 16
TDGC 1-4 1-15 1-14 1-11 1-3
TDTE 40 - 41 37 - 40 31-42 71-72 34
TDCCM 38-100 36 - 63 36 -63 36 - 62 98 - 100
TDPCM 13-32 / / 23-29 40 - 41
Original 1-100 1-100 1-100 1-100 1-100
Methods S6 S7 S8 S9 Total number
PCC 1-12 1-12 1-12 / 96
CMI / 1-13 / / 78
RF 6-7,10-13, 25, 31 - 32, 35 - 36, 44, 46, 54 1-2 / / 44
TDGC 1-3 1-2 / 20 53
TDTE 84 - 86 1-2 / 7 27
TDCCM 94 -100 1-26 2-3 74 -77 188
TDPCM 13-43 1-20 / / 80
Original 1-100 1-100 1-100 1-100 900

on the stable regime where the training sample size exceeds 1300,
yielding 101 paired samples for each comparison. No multiple-
comparison correction is applied, as the Wilcoxon tests are used as a
supplementary analysis to support the observed performance
differences.

In addition to statistical significance, the median difference (Median
A) is reported to quantify the practical magnitude of the performance
differences. Median A denotes the median performance improvement of
the proposed method relative to the baseline across paired training-
validation configurations, with positive values indicating better
performance.

The results for TDCCM and TDPCM are reported in Tables 4 and 5.
Across all performance metrics, existing feature selection methods differ
significantly from TDCCM and TDPCM, highlighting the consistent su-
periority of our proposed approach.

Fig. 11 shows the comparison between actual values and predicted
values of soft sensor models constructed with different feature selection
methods when the training set sample size is 1350. The results indicate
that the approaches based on time-delayed cross mapping achieve su-
perior accuracy in overall prediction.

Table 6 presents the detailed time-delayed features selected by each
method when the training set sample size is 1350. For example, since

Table 18
Evaluation results of the ablation study on the false causality identification on
the CSTR case.

Methods R? RMSE MAE
TDCCM (original) 0.7852 + 0.0767 + 0.0609 +
0.0342 0.0058 0.0051
TDPCM (original) 0.7735 + 0.0789 + 0.0614 +
0.0123 0.0021 0.0017
TDCCM (with false 0.5462 + 0.1117 + 0.0876 +
causality) 0.0364 0.0060 0.0062
TDPCM (with false 0.6913 + 0.0894 + 0.0728 +
causality) 0.0468 0.0150 0.0132
1 5 2

Fig. 22. True causal diagram of the chain-structured system. The numbers on
the links denote the time delays of causal effects.
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Fig. 21. Variation of causal strengths of S7 on the KPI with various time delays derived by different causal inference methods.
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Fig. 24. Causal inference results of TDCCM and TDPCM on the chain-structured system with varying standard deviation of measurement noise: (a) 0.02; (b) 0.05;

(c) 0.1.
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Fig. 25. True causal diagram of the chain-structured system. The numbers on
the links denote the time delays of causal effects.

TDPCM selects 7 — 42 for U1, the input features for predicting the KPI at
time point linclude u; (I — 7) to u; (I — 42). It can be observed that TDGC-
based method has the largest number of features, followed by TDPCM,
while TDCCM has the lowest number of features. This suggests that the
model performance is not determined by the mere number of features,
and our approach improves model performance and stability by select-
ing features that involve causal information.

4.1.4. Discussions
1) Sensitivity analysis on hyper-parameters

Tables 7 and 8 present the average performance and standard devi-
ation on the test set using TDCCM and TDPCM under different parameter
settings, respectively. The results indicate that TDCCM demonstrates
low sensitivity to the E and moderate sensitivity to 7, whereas TDPCM is
moderately sensitive to E but highly sensitive to 7. A notable drop in
model accuracy occurs when 7 surpasses 1, likely because industrial
process data often have large sampling intervals. In such cases, an
increased 7 may hinder effective direct causality inference and feature
selection.

2) Comparisons with deep learning methods

Deep learning models, especially those based on recurrent and
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makes them prone to overfitting. In contrast, the proposed causal feature
selection methods infer time-delayed causal relationships that reflect
process mechanisms, enabling effective generalization in data-scarce
scenarios with better stability and interpretability.

3) Model adaptability analysis

To assess the effectiveness of the proposed model under nonlinear
regression, we further evaluate all feature selection methods on the
debutanizer column case using Gaussian-kernel support vector regres-
sion (SVR). The Gaussian-kernel SVR model is implemented in MATLAB
with default hyper-parameter settings. This strategy mitigates over-
fitting risks under limited data conditions and ensures that the focus

Table 19
Implementation details of feature selection methods in the two case studies.
Methods  Calculation Debutanizer column CSTR case
method case
PCC / / /
CMI K-nearest- Neighborhood size = 3 Neighborhood size = 3
neighbor
RF / NumTrees = 100, NumTrees = 100,
MinLeafSize = 1, MinLeafSize = 1,
SplitCriterion = mse, SplitCriterion = mse,
random seed = 1107 random seed = 1107
TDGC Vector Model order = 3 Model order = 3
autoregression
TDTE K-nearest- Neighborhood size = 3 Neighborhood size = 3
neighbor
TDCCM / E=471=1 E=71=
TDPCM / E=4r71=1 E=7,7=1
Original  / / /
Table 20

Neural network architectures and hyper-parameter configurations used in the
deep learning models.

attention mechanisms, are widely recognized as powerful tools in soft Component Transformer GRU LST™
sensor modeling. In this subsection, we evaluate three representative Sequence length 100 100 100
architectures: the long short-term memory (LSTM) network, the gated Batch size 16 16 32
it (GRU) and the T f Each model is foll ab Learning rate 1.22 x 1073 3.28 x 10 1.70 x 10™
recurrent unit ( ) and the Transformer. ach model is followed by a Dropout probability 0.4425 0.4358 0.0819
fully connected feedforward network for final prediction. Hyper- Hidden size 32 128 128
parameters are optimized using Bayesian optimization. Further Number of layers 2 encoder layers 1 GRU layer 3 LSTM layers
training details are provided in Appendix B. A“edn;i‘m he;‘!ijs 1 / /
. . Feed forward dimension 512 / /
. The evaluation results of @e de.ep learning models on the debutan- Fully connected 2 layer (64,64)  2-dayer (32, 2 layer (32,
izer column case are summarized in Table 9. It can be seen that deep regressor 16) 128)
learning models show lower predictive accuracy and higher uncertainty Training epochs 200 200 200
than the proposed methods, likely due to limited training data that
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Fig. 26. Causal inference results of TDCCM and TDPCM on the fork-structured system.
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remains on evaluating feature selection methods. The evaluation results
are presented in Table 10. When the linear PLS model is replaced with
the nonlinear SVR model, a general decline in predictive performance is
observed across all methods. This may stem from the limited sample size
and the use of default parameter settings. Notably, this result should not
be viewed as a general flaw of nonlinear regression models, but rather
reflects a specific case of the SVR model without parameter tuning. The
original model without feature selection achieves superior performance
to several baseline methods, suggesting that nonlinear regression can
partially mitigate the influence of irrelevant features. Despite the overall
performance drop, TDCCM remains the method with highest average
performance, and TDPCM continues to provide stable performance in
the worst-case scenarios. These results indicate that the proposed feature
selection methods based on TDCCM and TDPCM remain effective
regardless of the regression model used.

4) Ablation study on the causal influence delay constraint

The proposed feature selection strategy relies on the assumption that
historical measurements with time lags shorter than the identified causal
influence delay have a limited impact on the KPI. To further investigate
the validity of this delay constraint, an ablation study is conducted by
reintroducing short-lag measurements preceding the detected causal
delays of auxiliary variables. Specifically, for all the auxiliary variables,
the candidate lag windows are expanded by progressively adding up to
five pre-delay extensions, with other feature selection strategies
unchanged.

Figs. 12 and 13 report the RMSE of the validation and test sets ob-
tained by TDCCM and TDPCM, respectively. The observations show that
incorporating a small number of pre-delay measurements can indeed
improve the performance in the test set, with the most notable
improvement occurring when three additional lags are included. How-
ever, adding more pre-delay measurements eventually leads to perfor-
mance degradation in the test set. Notably, this behavior is not reflected
in the validation performance. On the validation set, the predictive ac-
curacy continues to increase as more pre-delay measurements are
included. This discrepancy suggests that excessive inclusion of pre-delay
measurements may lead to overfitting to validation data while providing
limited generalization benefits on unseen test samples, particularly
when model selection is guided solely by validation performance.

Table 11 presents a comparison between the original results and
those predicted by the best-performing models on the validation set
within the considered pre-delay windows. It is evident that incorpo-
rating pre-delay windows leads to a decline in model performance. Since
validation accuracy increases monotonically with larger pre-delay
windows, it fails to clearly indicate when pre-delay measurements
cease to be beneficial. For this reason, a causal influence delay constraint
is strictly enforced as a conservative design choice to improve general-
ization and model stability under the current validation strategy.

5) Computational cost analysis

In this subsection, the computational cost of different causal infer-
ence methods is evaluated. All computations are performed on a laptop
equipped with an 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30 GHz
CPU and 16 GB RAM. The causal inference considers seven auxiliary
variables and one KPI, with a maximum time delay of d = 100. For each
method, we evaluate the causal strength between every pair of auxiliary
variables as well as between each auxiliary variable and the KPI,
resulting in 56 variable pairs over 100 time delays. The empirical wall-
clock times for the four causal inference methods on this setting are
summarized in Table 12. TDGC is computationally efficient, requiring
less than half a second to complete the analysis. TDTE is approximately
1,000 times slower. TDCCM and TDPCM incur the highest computa-
tional costs, with runtimes around 850 s. This aligns with their theo-
retical complexity, as both involve repeated state-space reconstruction
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and nearest-neighbor searches. The additional overhead introduced by
TDPCM on top of TDCCM is minimal, indicating that the majority of the
computational burden stems from the TDCCM step, while the partial
correlation calculations in TDPCM contribute only a negligible cost.

In practice, causal inference and feature selection are performed
offline and only once for a given process and dataset, whereas the
resulting soft sensor model is used repeatedly in online operation.
Therefore, although TDCCM and TDPCM are more expensive than TDGC
and TDTE, the computational cost of the soft sensor model remains
acceptable in industrial applications.

4.2. Continuous stirred tank reactor

4.2.1. Dataset description

The continuous stirred tank reactor (CSTR) is one of the most widely
used reactor types in chemical and biochemical industries. The flow-
chart of the CSTR is illustrated in Fig. 14, with detailed descriptions of
monitoring variables provided in Table 13. Specifically, S1 represents
the liquid level in the reactor, which is vital for ensuring stable volume
and proper mixing. S2 and S4 denote the coolant flow rate and the
coolant temperature in the jacket, respectively. Both of them are
essential for temperature regulation within the reactor. S3 is the reactor
temperature, a critical variable affecting reaction kinetics. S5 and S7
indicate the feed flow rate and reactant concentration in the reactor feed
stream, respectively. Both of them directly influence the input of re-
actants and the reaction rate. S8 is the feed temperature, which can
impact the initial energy state of the reactants entering the reactor. S6
represents the outlet flow rate, helping to maintain a steady-state
operation by balancing inflow and outflow. S9, the inlet coolant tem-
perature, is necessary for managing the heat exchange dynamics.

In a CSTR, reactants are continuously fed into the reactor while
products are simultaneously removed, maintaining a constant reaction
volume. In practical applications, the reactant concentration in the
reactor is the KPI of interest for guiding process control, denoted as S10.
To predict the KPI online, the above nine easily measurable auxiliary
variables are recorded, denoted as S1-S9. Further details on CSTR can be
found in [47]. Based on the process knowledge, the true causal network
of the CSTR system is illustrated in Fig. 15 [48].

In this study, a total of 2400 samples are collected from the process.
The first 1600 samples are used for causal inference and model estab-
lishment, and the remaining 800 samples are reserved for model testing.
Before analysis, all variables are scaled using min-max normalization.

4.2.2. Causal inference

Fig. 16 shows the variation of the FNN with the embedding dimen-
sion for all the variables in the CSTR case. An embedding dimension of E
= 7 is then selected, as it is the first dimension at which all FNN values
drop below 5 %.

Then, according to Algorithm 1, the causal inference results of
TDPCM can be obtained. A negative lag search window of 20 is
employed to identify potential synchrony-induced false causality.
Fig. 17 presents the causal strength with time delay of each auxiliary
variable on the KPI as calculated by TDCCM and TDPCM. It indicates
that S7 has the strongest causal impacts on the KPI, followed by S6 and
S1. This result can be explained by process knowledge: S7 determines
the amount of reactant entering the reactor, and thus has the most im-
mediate and significant impact on the KPI, as supported by the material
balance of the CSTR. S1 influences the KPI by affecting the reaction
volume. S6 is inversely related to the residence time of the reactant in
the reactor. Theoretically, S5 is expected to have a significant direct
causal impact on the KPI. However, because its value is tightly con-
strained within the process, its influence is not detected. Notably, while
S2, S3 and S4 exhibit strong causal intensity with respect to the KPI at
early time delays, the extreme values appear at negative time lags,
suggesting that these are actually synchrony-induced false causality and
the KPI has causal influence on them. This is consistent with the true
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causal network shown in Fig. 15. The above analysis demonstrates that
the causal inference results of TDPCM show satisfactory consistency
with the process knowledge.

4.2.3. Soft sensor modeling results and comparisons

With a maximum time delay d of 100, 1500 effective labeled samples
are available for model development. The sizes of the training set are
varied from 1000 to 1350 samples in steps of 5, keeping the sum of
training and validation sets constant at 1500, to evaluate the stability of
different methods.

Taking a training set sample size of 1250 as an example, Fig. 18
highlights the selected features with the optimized threshold obtained
by TDCCM and TDPCM. Notably, the causal influence delays of S2, S3
and S4 are around 25 because the high causal strength at early time
delays are synchrony-induced false causality. Therefore, features at
these time delays with high causal strength are not selected. In contrast,
the causal influence delay for S7 is 1, and its features are selected at early
time delay.

The performance metrics on the test set with increasing sample size
of the training set using different feature selection methods are shown in
Fig. 19. It can be seen that models based on RF and TDPCM exhibit
greater stability compared to other feature selection methods.

Table 14 presents the performance and uncertainties on the test set
using different feature selection methods when the sample size of the
training set exceeds 1250. For model average performance, TDCCM
achieves the best average performance, followed by TDPCM. Compared
with the existing best method CMI, TDCCM yields a 7.92 % increase in
R2, along with 11.33 % and 10.04 % reductions in RMSE and MAE,
respectively. For model uncertainty, the standard deviation of RF is the
best, followed by TDPCM. As the method with minimal risk, TDPCM
achieves a 7.8 % increase in R? and reductions of 9.46 % in RMSE and
13.51 % in MAE compared to the second-best method TDCCM in the
worst scenario. Overall, the feature selection methods based on time-
delayed cross mapping techniques achieve superior average perfor-
mance and stability compared to existing feature selection methods.

Again, we employ the Wilcoxon signed-rank test [46] for significance
testing, and the median difference is reported to quantify the practical
magnitude of the performance differences. The analysis focuses on the
regime where the training sample size exceeds 1250, resulting in 21
paired samples. The corresponding results for TDCCM and TDPCM are
summarized in Tables 15 and 16. Across all performance metrics,
existing feature selection methods differ significantly from TDCCM and
TDPCM, highlighting the consistent superiority of our proposed
approach.

Fig. 20 shows the comparison between actual values and predicted
values of soft sensor models constructed with different feature selection
methods when the training set sample size is 1250. The results indicate
that the approaches based on TDCCM and TDPCM achieve superior
accuracy in overall prediction.

Table 17 presents the detailed features selected by each method
along with the total number of features when the training set sample size
is 1250. It can be observed that TDCCM based method has the largest
number of features, followed by PCC and TDPCM. However, the accu-
racy of TDCCM and PCC is much lower than that of TDPCM, indicating
that the proposed method enhances model accuracy and stability by
reducing redundant features. Moreover, compared with other feature
selection methods, although the number of features increases, both
model accuracy and stability are improved as listed in Table 14, indi-
cating that important features with direct causality information are
involved.

4.2.4. Discussions

1) Discussions on causal inference results

In order to show the superiority of the causal inference method based
on state-space reconstruction, Fig. 21 depicts the changes in causal
strength of S7 on the KPI with different time delays, derived from

25

Advanced Engineering Informatics 71 (2026) 104337

different time-series causal inference techniques, as well as their opti-
mized thresholds and selected features. Notably, as there are no poten-
tial confounding variables in the causal path from S7 to the KPI, TDCCM
and TDPCM give similar results.

From Fig. 21, both TDGC and TDTE successfully detect the causal
relationship from S7 to the KPI, but the causal strength declines sharply
as the time delay increases. This occurs because S7 and the KPI are
interdependent: the historical information of S7 is already embedded in
the past measurements of the KPI. As a result, removing S7 at large time
delays has little impact on predicting the KPI. Therefore, for TDGC and
TDTE, which rely on the decorrelation assumption, features of S7 with
large time delays are considered to have no causal effect. In contrast,
methods based on state-space reconstruction infer causal relationships
through cross mapping between the manifolds of variables. It can be
seen that TDCCM and TDPCM identify three distinct stages of S7 on the
KPI: strong causal relationship, moderate or weak causal relationship,
and no causal relationship. This allows them to provide more compre-
hensive information for feature selection compared to TDTE and TDGC.

2) Ablation study on the synchrony-induced false causality identification

False causality caused by synchrony is a consequence of using state
space reconstruction in causal inference [30]. In the proposed causal
feature selection framework, TDCCM and TDPCM are designed to
explicitly exclude such effects by selecting causal delays only when
causal strength is locally maximal. To determine whether this filtering
process is necessary, we conduct an ablation experiment where
synchrony-induced false causality is intentionally retained. In the CSTR
case, variables S2, S3 and S4 are influenced by S10, and the false cau-
sality is detected at early time delays. In the ablation variant, these
variables are manually assigned causal delays of one, effectively
bypassing the false-causality screening. A soft sensor model is then
constructed using the resulting feature set, and its predictive perfor-
mance is compared with that of the original approach.

The evaluation results, summarized in Table 18, show that the in-
clusion of synchrony-induced false causal features leads to a substantial
degradation in model accuracy and stability, with notable increases in
RMSE and MAE and a marked reduction in R2. This decline confirms that
synchrony-induced false causality does not convey meaningful predic-
tive information and introduce redundant features into the model.
Therefore, identifying and removing synchrony-induced false causality
is essential for ensuring the effectiveness of causal feature selection re-
sults based on time-delayed cross mapping.

5. Numerical studies

This section aims to assess the ability of TDCCM and TDPCM in
inferring causal relationships between interdependent variables
considering time delay, which plays a crucial role in effective causal
feature selection.

5.1. A chain-structured system

First, we consider a chain-structured system to verify whether
TDPCM can effectively eliminate indirect causal relationships. Inspired
by [32], we establish a four-variable chain-structured system as:

yi(®) =y1(t—1)[m —aryi(t—1)]
Y2(t) =ya(t — 1)[o2 — a2y2(t — 1) — Zi2ya (t— 1)] 2%
yg(t) yg(t 1 [(13 — Qa3 yz t — 1) /123'}’2(15 — 5)]
Ya(t) = ya(t —1)-[ag — ag-ya(t — 1) — dza-ys(t — 2) ]

where all values of a are set to 3.6; and all values of 1 are set to 0.5. To
account for the influence of measurement error, Gaussian noise is
introduced into each observation, following a normal distribution with
zero mean and a standard deviation of 0.01. Its true causal diagram is
illustrated in Fig. 22, where the numbers on the links denote the time
delays of causal effects.
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Then, a total of 2000 samples are generated for causal inference.
Fig. 23 illustrates the TDCCM and TDPCM results of the chain-structured
system. TDCCM infers that Y3, Yo, and Y3 all exert strong causal in-
fluences on Y4. In contrast, TDPCM effectively reduces the causal
strengths of Y; and Y, while preserving that of Y3, demonstrating the
capability of TDPCM in identifying direct causality. Additionally, both
TDCCM and TDPCM accurately identify the causal delay from Y3 to Ys.

We then examine how measurement noise affects the results of
causal inference. Specifically, the standard deviation of noise is varied to
0.02, 0.05 and 0.1, while all other parameters remain unchanged. The
causal inference results are illustrated in Fig. 24. As noise increases, the
inferred causal strength from both methods gradually weakens. At a
noise level of 0.02, TDCCM suggests that Y; has a stronger causal in-
fluence than Y3, whereas TDPCM correctly identifies Y3 as having the
strongest effect. When the standard deviation increases to 0.05, TDCCM
detects an incorrect causal delay, while TDPCM continues to identify the
delay accurately. At the highest noise level of 0.1, both methods fail due
to excessive noise interference. These results indicate that TDPCM is
more robust to noise and more effective at identifying both direct cau-
sality and causal delays compared to TDCCM.

5.2. A fork-structured system

A fork-structured system can be used to verify whether TDPCM
mistakenly eliminates direct causal relationships. Similarly, we establish
a three-variable fork-structured system as:

i) =yt =1)[m - yi(t—1)]
Y2(t) =ya(t — 1)[az — azy2(t — 1)]
=y3(t—1)[az —azy2(t — 1) — hizya(t — 1) — dazy2(t — 3) ]

27
y3(t)

where a7 = as =4, a3 = 2.2, 413 = 0.6, 153 = 0.7. To account for the
influence of measurement error, Gaussian noise is again introduced into
each observation, following a normal distribution with zero mean and a
standard deviation of 0.001. Its true causal diagram is illustrated in
Fig. 25, where the numbers on the links denote the time delays of causal
effects.

Then, a total of 2000 samples are generated for causal inference.
Fig. 26 illustrates the TDCCM and TDPCM results of the fork-structured
system. Both TDCCM and TDPCM accurately identify the causal influ-
ence and delay from Y; and Y3 to Y3, indicating that TDPCM does not
mistakenly eliminate direct causal relationships.

6. Conclusion

The characteristics of time delays and inherently interdependent
variables in industrial processes are always ignored by existing causal
feature selection methods, resulting in inadequate model accuracy and
stability. To overcome these limitations, this paper proposes a causal
feature selection framework based on time-delayed cross mapping.
TDCCM is introduced for total causal inference, and TDPCM is devel-
oped for direct causal inference. The variation of causal strengths with
time delays is considered, and the decorrelation assumption is avoided.
Besides, an objective feature selection strategy based on causal inference
results is presented. The findings on the industrial cases and numerical
studies demonstrate that:

e Compared to causal feature selection method that ignores the influ-
ence of varying time delays, TDCCM achieves average RMSE re-
ductions of 34.3 % and 11.3 % in two respective cases. When
compared to causal feature selection methods that overlook the
interdependence between variables, TDCCM reduces average RMSE
by 22.3 % and 38.9 %, respectively.

e Compared with TDCCM, TDPCM shows a slight decrease in average
performance but exhibits substantially improved stability. As the
method with the lowest risk, TDPCM reduces RMSE by 5.93 % and
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9.46 % in two respective cases compared with TDCCM in the worst
scenario, with the average RMSE increasing by only 4.84 % and 2.87
% in the two cases, respectively.

e For both the chain-structured and fork-structured systems in the
numerical studies, TDPCM accurately identifies the direct causal
relationships with their causal delays.

Moreover, the proposed method faces several limitations that war-
rant further research. Firstly, TDPCM relies on the partial Pearson cor-
relation coefficient, which limits its ability to capture nonlinear
dependencies. Although some studies have proposed enhancements to
CCM to address this shortcoming [49], effectively incorporating
nonlinear relationships into the identification of direct causal links re-
mains an open challenge. Secondly, the two case studies considered in
this work are systems with relatively smooth and stationary dynamics.
In such settings, the causal inference analysis is conducted offline and
remains fixed during prediction. However, for processes with regime
shifts, multimodality or strong non-stationarity, the causal structure and
associated time delays may change over time. A systematic investigation
into online extensions therefore represents a promising direction for
future research. Finally, this study proposes a feature selection method
specifically designed for deterministic regression models. An important
future direction involves integrating time-delayed cross mapping tech-
niques with models characterized by inherent uncertainty, such as deep
neural networks. This integration may improve key feature identifica-
tion and ultimately enhance model performance.
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Appendix A

To ensure reproducibility of the experimental results reported in this
study, this appendix summarizes the implementation details and hyper-
parameter configurations of all feature selection methods considered.
Table 19 lists the calculation methods as well as the specific parameter
settings for all the feature selection methods used in the two industrial
cases.

Appendix B

This appendix summarizes the deep learning architectures and
hyper-parameter configurations used in the LSTM, GRU and Trans-
former models. Hyper-parameters are optimized via Bayesian optimi-
zation using Optuna [50]. The complete configuration after
optimization is provided in Table 20. All models are trained using mean
squared error loss and the Adam optimizer. Data are standardized before



S.-S. Chen et al.

model training using min-max normalization. The models are trained
ten times on every training set to get a robust result.

Data availability

The code is publicly available at https://github.com/dirgel/
TDPCM.
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