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A B S T R A C T

Soft sensor modeling plays a crucial role in process monitoring. Causal feature selection can enhance the per
formance of soft sensor models in industrial applications. However, existing methods ignore two critical char
acteristics of industrial processes. Firstly, causal relationships between variables always involve time delays, 
whereas most causal feature selection methods investigate causal relationships in the same time dimension. 
Secondly, variables in industrial processes are often interdependent, which contradicts the decorrelation 
assumption of traditional causal inference methods. Consequently, soft sensor models based on existing causal 
feature selection approaches often lack sufficient accuracy and stability. To overcome these challenges, this 
paper proposes a causal feature selection framework based on time-delayed cross mapping. Time-delayed cross 
mapping employs state space reconstruction to effectively handle interdependent variables in causality analysis, 
and considers varying causal strength across time delay. Time-delayed convergent cross mapping (TDCCM) is 
introduced for total causal inference, and time-delayed partial cross mapping (TDPCM) is developed for direct 
causal inference. Then, in order to achieve automatic feature selection, an objective feature selection strategy is 
presented. The causal threshold is automatically determined based on the model performance on the validation 
set, and the causal features are then selected. Two real-world case studies show that TDCCM achieves the highest 
average performance, while TDPCM improves soft sensor stability and performance in the worst scenario. On 
average over the two cases, TDCCM decreases root mean square error (RMSE) by about 8.93% compared with the 
best existing feature selection method, and TDPCM further decreases RMSE in the worst scenario by about 7.69% 
relative to TDCCM. The code is publicly available at https://github.com/dirge1/TDPCM.

1. Introduction

Monitoring, evaluating and optimizing industrial processes are 
crucial tasks. Generally, key performance indicators (KPIs) such as 
product quality, energy consumption and pollutant emissions are 
recorded continuously to reflect the state of the industrial process and 
provide guidance for process control. However, as industrial processes 
become increasingly complex, the cost and difficulty of direct KPI 
measurement have risen, making it challenging for online monitoring 
KPIs [1]. Thanks to the rapid development of the industrial internet of 
things, collecting abundant sensor data of easily measurable auxiliary 
variables have become feasible. By establishing mathematical relation
ships between auxiliary variables and KPIs, online KPI prediction can be 
achieved [2]. This technique is known as soft sensing (i.e., soft sensor 

modeling), and has been extensively adopted in practical industries [3].
There are two main approaches for developing soft sensor models: 

physics-based and data-driven [3]. The first approach is effective when 
the process physical mechanism is well-understood. Nevertheless, this 
prerequisite is always difficult to satisfy in actual industrial scenarios. 
Consequently, data-driven methods have emerged as vital alternatives. 
Representative data-driven approaches include statistical models like 
partial least square (PLS) regression [4,5], and machine learning models 
like random forest (RF) regression [6]. Moreover, recently developed 
deep learning methods have also been applied to soft sensor modeling, 
such as long short-term memory (LSTM) neural network [7], convolu
tional neural network [8] and variational autoencoder [9]. Although 
data-driven methods have significantly boosted the development of soft 
sensor models, the stability of these models continues to be a major 
concern for their practical application.
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Feature selection is one of the most effective strategies for ensuring 
the stability of soft sensor models, because it not only helps reveal the 
underlying process mechanism but also improves model robustness and 
reduces computational complexity. Existing feature selection ap
proaches for industrial soft sensing mostly fall into three categories: 

(1) Correlation-based methods, including techniques such as the 
Pearson correlation coefficient (PCC) [10] and grey relational 
analysis [11]. These methods identify auxiliary variables that are 
highly correlated with KPIs, and then select them as model in
puts. However, correlation does not always imply causation [12]. 
Variables that significantly affect each other may exhibit weak 
correlations due to time delay, whereas highly correlated vari
ables may lack causal relationship. Therefore, feature selection 
methods based on correlation may fall short in accurately pre
dicting KPIs.

(2) Model training-based approaches, such as RF [13,14], 
nonnegative garrote [15,16] and attention mechanisms [17]. 
These methods automatically assign weights to input features 
during training. The weights help the model emphasize relevant 
features and minimize the influence of less significant ones. 
Nevertheless, these methods are highly dependent on the specific 
model architecture used, which can result in inconsistent as
sessments of feature importance across different models. 

Furthermore, these techniques may still capture correlations 
rather than uncovering causal relationships.

(3) Causality-based methods, including mutual information (MI) 
[18–21] and conditional mutual information (CMI) [22,23], 
Granger causality (GC) [24,25] and transfer entropy (TE) 
[26,27], have been employed for feature selection in industrial 
processes. However, these methods exhibit several critical limi
tations when applied to industrial soft sensor modeling:

• Firstly, MI and CMI do not incorporate time delay into causal 
inference. They quantify causal influence between variables at 
the same time point, and therefore cannot capture causal re
lationships that manifest with time delays. This omission is 
problematic because industrial variables commonly exhibit 
delayed interactions due to control feedback loops, material 
transport or dynamic process responses [28,29]. As a result, MI 
and CMI cannot identify causal features with meaningful time 
delays.

• Secondly, although GC and TE explicitly consider time delays in 
causal inference, they still suffer from two major limitations. On 
one hand, they rely on the decorrelation assumption, which re
quires that the influence of a causal variable on the target can be 
isolated by conditioning on other variables [30]. Real industrial 
processes violate this assumption because process variables are 
inherently interdependent [31]. Therefore, GC and TE may 

Nomenclature

List of Symbols
C Candidate set of causal thresholds for feature selection
D Number of candidates for causal threshold determination
E Embedding dimension
L Length of the time series
M Number of auxiliary variables for soft sensor modeling
N Number of historical measurements for soft sensor 

modeling
MX, MY, MZ Trajectory matrices of X ,Y and Z
MX,l, MY,l Embedding vectors of X and Y in the reconstructed space 

at the time point l

M̂
X→Y
Y,l Predicted embedding vectors of Y at the time point l using 

the trajectory matrix of X

M̂
X→Y,ξ
Y,l− ξ Predicted embedding vectors of Y at the time point l − ξ 

using the trajectory matrix of X considering time delay ξ
Q Number of disturbing variables
Uγ Stacked vector at time delay γ for TDPCM calculation
X, Y, Z Time series variables
Z Disturbing variable set
ẐX Predicted time series of Z using the trajectory matrix of X
c1,c2,…, cD Candidates for causal threshold determination
cbest Optimal causal threshold for feature selection
d Maximum time delay considered in TDCCM/TDPCM 

analysis
f Mapping function of the soft sensor model
l Generic notation for time point
tmin First valid prediction time for reconstructed series
tl
i Time point of the ith nearest neighbor embedding vector

wi Weight assigned to the ith nearest neighbor based on 
Euclidean distance

x(l), y(l) The value of X and Y at the time point l
ytmin :L Time series of Y from time point tmin to time point L
ŷX→Y(l) Scale prediction of y(l) using the trajectory matrix of X
ŷX→Y

tmin :L Predicted time series of Y from time point tmin to time point 

L using the trajectory matrix of X
ŷX→Y,ξ(l − ξ) Scale prediction of y(l − ξ) using the trajectory matrix 

of X considering time delay ξ
ŷX→Y,ξ

tmin :L− ξ Predicted time series of Y from time point tmin to time point 
L – ξ using the trajectory matrix of X considering time delay 
ξ

ŷ
X→Z→Y;ξZX ,ξYẐX
tmin :L− ξZX − ξYẐX

Predicted time series of Y from time point tmin to time 

point L − ξZX − ξYẐX 
using the predicted trajectory matrix of 

Z considering time delay ξYẐX
, the predicted trajectory 

matrix of Z is obtained using the trajectory matrix of X 
considering time delay ξZX

Σγ Covariance matrix of the stacked vector Uγ

Ωγ Precision matrix corresponding to Σγ
ΞYX Set of local maxima in the TDCCM causal strength curve 

from Y to X
ΠYX Set of local maxima in the TDPCM causal strength curve 

from Y to X
γ Time delay considered in TDPCM for evaluating direct 

causal strength
γYX Optimal causal time delay from Y to X determined by 

TDPCM
ξ Generic notation for time delay
ξYX Optimal causal time delay from Y to X determined by 

TDCCM
ρY→X Causal strength from Y to X computed by CCM
ρY→X,ξ Time-delayed causal strength from Y to X at delay ξ 

calculated by TDCCM
ρY→X|Z Direct causal strength from Y to X considering Z calculated 

by PCM
ρY→X|Z,γ Time-delayed direct causal strength from Y to X 

considering Z at delay γ calculated by TDPCM
ρY→X|Z,γ Time-delayed direct causal strength from Y to X 

considering the set Z at delay γ calculated by TDPCM
τ Embedding time delay
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become unreliable in industrial processes. On the other hand, GC 
and TE cannot characterize how causal strength varies across 
different time delays. Both methods provide a single causal 
dependence result, making it impossible to determine the specific 
lag at which the causal effect is strongest or how the causal 
contribution evolves with increasing delay.

These issues highlight a gap between causal inference and practical 
feature selection in industrial processes and point to the need for a 
method that can quantify causal influence across multiple time delays 
and work reliably in interdependent industrial processes. To address this 
gap, this study proposes a causal feature selection framework tailored 
for industrial soft sensor modeling. The framework is supported by two 
time-delayed cross mapping methods: time-delayed convergent cross 
mapping (TDCCM) and time-delayed partial cross mapping (TDPCM), 
designed for inferring total and direct causality for interdependent time 
series across multiple time delays. Within these two methods, state- 
space reconstruction is employed to handle variable interdependence. 
By quantifying causal strength over lag dimensions, the framework en
ables the selection of informative variables and their time delays. 
Moreover, an objective feature selection strategy is developed, where 
the causal index threshold is automatically determined using validation 
performance rather than empirical rules.

The contributions of this work are summarized as follows: 

• TDCCM and TDPCM are introduced for inference of total and direct 
causality between interdependent industrial variables across multi
ple time delays.

• A time-delayed causal feature selection framework tailored for in
dustrial soft sensor modeling is proposed.

• An objective feature selection strategy based on the results of time- 
delayed causal inference techniques is presented involving causal 
threshold optimization.

Notably, the integration of causal inference techniques and graph 
neural networks is also a notable trend in the field of soft sensor model 
development [32–36]. This paper, however, focuses on feature selection 
using causal inference techniques, distinguishing it from the objective of 
graph neural networks, which is to further exploit spatial information 
from selected features based on causal graphs.

The organization of the paper is as follows. The preliminaries of 
convergent cross mapping and partial cross mapping are introduced in 
Section 2. Next, the time-delayed causal feature selection framework 
based on TDCCM and TDPCM is developed in Section 3. After that, the 
effectiveness of the proposed method in soft sensor modeling is verified 
by two engineering cases in Section 4. Subsequently, the effectiveness of 
the proposed causal inference method is demonstrated by numerical 
cases in Section 5. Finally, Section 6 concludes the work.

2. Preliminaries

2.1. Convergent cross mapping

The convergent cross mapping (CCM) method is grounded in the 
theory of state-space reconstruction, which stems from Takens’ theorem 
[37]. This theorem posits that a time series can be embedded into a 
higher-dimensional space to reconstruct its dynamics. Considering two 
time series X = {x(t) }L

t=1 and Y = {y(t) }L
t=1 with length L, their state- 

space reconstruction is given by: 

MX,l = [x(l), x(l − τ), x(l − 2τ),…, x(l − (E − 1)τ ) ]
MY,l = [y(l), y(l − τ), y(l − 2τ),…, y(l − (E − 1)τ ) ] 1 

where MX,l and MY,l are the embedding vectors of X and Y in the 
reconstructed space at the time point l; τ is the time delay of embedding; 
and E is the embedding dimension. For the time series with length L, l 

ranges from 1+(E − 1)τ to L, and totally L − (E − 1)τ embedding vectors 
can be constructed from the time series. Then, the trajectory matrix of X 
and Y can be represented as: 

MX =

⎡

⎢
⎢
⎣

MX,tmin

MX,tmin+1
⋯

MX,L

⎤

⎥
⎥
⎦, MY =

⎡

⎢
⎢
⎣

MY,tmin

MY,tmin+1
⋯

MY,L

⎤

⎥
⎥
⎦, tmin = 1+(E − 1)τ 2 

The trajectory matrix represents a set of sampled points constructed 
from monitored time series data. All the sampled points are on a 
manifold, which is a continuous structure in the reconstructed space that 
captures the time-varying states of the time series. According to the 
theory of CCM [30], if X is causally influenced by Y, then the manifold 
of X contains information that can reconstruct the dynamics of Y. At a 
specific time point l, the embedding vector of Y can be predicted via a 
weighted approximation: 

M̂
X→Y
Y,l =

∑E+1

i=1
wiMY,tli

3 

where wi represents a weight determined by the distance between MX,l 

and its ith nearest neighbor embedding vector with corresponding time 
point tl

i ; and MY,tli 
represents the contemporaneous embedding vector of 

Y at the time point tli . The weights are calculated by [30]: 

wi = vi

/
∑E+1

j=1
vj 4 

vi = exp

⎛

⎝ −
d
(

MX,tli
,MX,l

)

d
(

MX,tl1
,MX,l

)

⎞

⎠ 5 

where d(⋅, ⋅) is the Euclidean distance between two embedding vectors; 
and MX,tl

1 
represents the nearest embedding vector to MX,l across all time 

points.
Subsequently, the scale prediction of y(l) can be obtained by taking 

the first component of the predicted embedding vector: 

ŷX→Y(l) =
(

M̂
X→Y
Y,l

)

1
6 

By performing this reconstruction for all eligible time points, the 
predicted time series of Y is expressed as: 

ŷX→Y
tmin :L = [ŷX→Y(tmin), ŷX→Y(tmin + 1),…, ŷX→Y(L) ]T 7 

where ŷX→Y
tmin :L represents the predicted time series of Y from the time point 

tmin to the time point L using the trajectory matrix of X.
For clarity, we write the time series X and Y in vector form as: 

x1:L = [x(1), x(2),…, x(L) ]T, y1:L = [y(1), y(2),…, y(L) ]T 8 

Then, the causal strength from Y to X is quantified by comparing the 
predicted and actual values through the Pearson correlation coefficient 
[30]: 

ρY→X = pcc
(

ŷX→Y
tmin :L, ytmin :L

)
9 

where pcc(e1, e2) denotes the PCC calculation; and ρY→X denotes the 
total causal strength from Y to X calculated by CCM. As the time series 
length L approaches infinity, ρY→X will converge to a specific value. If the 
convergent value exceeds the predefined threshold c, it means that Y has 
a causal effect on X and vice versa. Similarly, the dynamic of X can be 
predicted based on the embedding vectors of Y to detect the causal in
fluence of X on Y.
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2.2. Time-delayed convergent cross mapping

Suppose that there is a time delay ξ in the causal relationship from Y
to X. At this point, Mx,l is highly capable of predicting y(l − ξ) theoret
ically [38], and the embedding vector of Y can be predicted as:

M̂
X→Y,ξ
Y,l− ξ =

∑E+1

i=1
wiMY,tli

10

where the definitions of the parameters are consistent with those in
Eq. (3). Owing to the time delay, there are L − ξ − (E − 1)τ
predictable time points for Y. The corresponding scalar prediction
is obtained by takingthe first component of the vector:
ŷX→Y,ξ(l − ξ) =

(
M̂

X→Y,ξ
Y,l− ξ

)

1
11

Subsequently, after mapping the embedding vectors of X onto those
of Y for all eligible time points, the predicted time series of Y is expressed
as:

ŷX→Y,ξ
tmin :L− ξ =

[
ŷX→Y,ξ(tmin), ŷX→Y,ξ(tmin + 1),…, ŷX→Y,ξ(L − ξ)

]T
12

Then, by measuring the correlation between ŷX→Y,ξ
tmin :L− ξ and ytmin :L− ξ, the

causal strength of Y on X considering a time delay ξ can be quantified.
This is defined as time-delayed CCM (TDCCM) [38], which can be
expressed as:

ρY→X,ξ = pcc
(

ŷX→Y,ξ
tmin :L− ξ, ytmin :L− ξ

)
13

where ρY→X,ξ denotes the total causal strength from Y to X at time delay ξ
calculated by TDCCM. When ξ = 0, TDCCM corresponds to CCM, and Eq.
 (13) is the same as Eq. (9).

2.3. Partial cross mapping

When the system has only two variables, their causal relationship is
clearly direct. However, in a complex system with numerous variables,
there can be two types of causation: direct and indirect, as illustrated in
Fig. 1.

To distinguish direct causations from indirect ones, Leng et al. [39]
presented partial cross mapping (PCM) based on the framework of CCM.
Considering a potential disturbing time series Z = {z(t) }L

t=1, PCM
removes the influence of Z when investigating the causal effect of Y on X.
First, the optimal time delay of the causal influence from Z to X is
determined by examining all possible time delays between variables via
Eq. (13) and selecting the time delay that exhibits the highest causal
strength [39], which can be expressed as:
ξZX = argmax

ξ⩾0

(
ρZ→X,ξ

)
14

and the corresponding predicted time series ẑX→Z,ξZX
tmin :L− ξZX

can be obtained

via Eq. (12), denoted as ẐX.
Then, the optimal time delay of the influence from Y to ẐX is ob

tained similarly by:

ξYẐX
= argmax

ξ⩾0

(
ρY→ẐX ,ξ

)
15

and the corresponding predicted time series ŷ
X→Z→Y;ξZX ,ξYẐX
tmin :L− ξZX − ξYẐX

can be

derived using Eq. (12). If time series Y exhibits a high similarity

ŷ
X→Z→Y;ξZX ,ξYẐX
tmin :L− ξZX − ξYẐX

, it suggests a causal influence along Y → Z → X. Following

this, Eq. (9) can be extended as:

ρY→X|Z = ppcc
(

ŷX→Y,ξYX
tmin :L− ξZX − ξYẐX

, ytmin :L− ξZX − ξYẐX

⃒
⃒
⃒ŷ

X→Z→Y;ξZX ,ξYẐX
tmin :L− ξZX − ξYẐX

)
16

where ppcc(e1, e2|e3 ) denotes the partial PCC calculation quantifying
the correlation between two vectors e1 and e2 when considering the
vector e3; ξYX denotes the optimal time delay of the causal influence
from Y to X; and ρY→X|Z denotes the direct causal strength from Y to X
considering Z calculated by PCM. If the value ρY→X|Z exceeds the pre
defined threshold c, it means that Y has a direct causal effect on X
considering Z.

2.4. Problem formulation

Consider a KPI that needs to be predicted, denoted as X. The moni
tored sensor data includes M auxiliary variables Y1, Y2, … YM, each of
which records historical measurements over N time points. Specifically,
for the KPI at time l, denoted as x(l), it can be predicted by:

x̂(l) = f

⎛

⎝

⎡

⎣
y1(l − 1) y1(l − 2) ... y1(l − N)

... ... ... ...

yM(l − 1) yM(l − 2) ... yM(l − N)

⎤

⎦

⎞

⎠ 17

where yi(j) represents the measurement of the ith auxiliary variable at
time point j; and x̂(j) represents the prediction of the KPI at time point j.
The aim of soft sensor modeling is to determine the mapping relation
ship f between the auxiliary variables and the KPI. This paper focuses on
the problem of feature selection as illustrated in Fig. 2, aiming to select
features from the M × N feature set, which involves measurements of
different variables at various time points, to improve the performance
and stability of the soft sensor model.

Notably, some existing studies used historical measurements of the
KPI as input features during the operation of industrial processes
[40,41]. However, in this study, we consider the most challenging sce
nario, where the KPI is entirely unobservable during operations, and is
only observable in the laboratory for soft sensor model establishment.
This is also the most common situation in practice.

Fig. 1. Schematics of direct and indirect causal links. (a) Y directly causes X;
(b) Y indirectly causes X.

Fig. 2. Schematic diagram of the feature selection results.
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3. Methodology

3.1. Motivation

This study aims to perform feature selection on auxiliary variable 
measurements recorded at multiple historical time points for soft sensor 
modeling. Quantifying the causal strength of each auxiliary variable at 
various time delays with respect to the current value of the KPI can 
provide valuable guidance for feature selection. However, as discussed 
in the introduction, existing causality-based feature selection methods 
investigate causal relationships in the same time dimension. Besides, 
variables in industrial processes are often interdependent, which con
tradicts the decorrelation assumption of traditional causal inference 
methods. To address these issues, we propose a causal feature selection 
framework in this study based on time-delayed cross mapping.

For existing techniques, although TDCCM quantifies causal strengths 
across different time dimensions, it fails to distinguish direct causal re
lationships between variables. Consequently, TDCCM may introduce 
redundant features or ignore significant features, thereby impairing the 
stability of the soft sensor model. While PCM offers a way to quantify 
direct causality, it focuses only on the maximum causal strength across 
time delays, rather than the causal strength at specific lags, which limits 
its effectiveness for guiding feature selection in the time dimension. 
Therefore, in this section, we first propose TDPCM to infer direct causal 
relationships at different time delays within the state space 

reconstruction framework. Then, to achieve automatic causal feature 
selection, an objective selection strategy is proposed involving causal 
threshold optimization based on the model performance on the valida
tion set. An outline of the proposed method is illustrated in Fig. 3.

3.2. Time-delayed partial cross mapping

In this section, we present the TDPCM to quantify direct causal 
strength between interdependent time series. Without loss of generality, 
we consider a system with three time series, i.e., X, Y and Z. Suppose that 
Z exists in the causal path from Y to X , indicating that the causal effect of 
Y on X is indirect, while that of Z on X is direct, as shown in Fig. 1 (b). At 
this point, if a unique causal influence delay ξYX exists for the effect of Y 
on X , then there must exist a corresponding delay ξYZ on the interme
diate path from Y to Z such that ξYZ ≤ ξYX. When multiple delays from Y 
to X exist, there always exists at least one delay ξYX for which a corre
sponding ξYZ satisfying ξYZ ≤ ξYX exists. If the causal effect of Y on X can 
be covered by the causal effect of Y on Z, it indicates that the causal 
effect of Y on X is indirect. Based on the above analysis, by introducing 
the predicted time series of Y based on MZ with the optimal time delay 
ξYZ, the influence of the confounding variable Z can be eliminated.

Notably, Sugihara et al. [30] pointed out that when the unidirec
tional causal relationship between variables is excessively strong, it can 
lead to a phenomenon known as synchrony. This synchrony may pro
duce a spurious bidirectional causal link, thereby interfering with the 

Fig. 3. Outline of the proposed method.
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identification of the optimal time delay with the maximum causal
strength. The TDCCM method can distinguish such spurious relation
ships [38]. Specifically, a negative time delay at the peak of causal
strength indicates synchrony-induced false causality, whereas a delay of
zero or greater suggests a valid causal relationship at the corresponding
time lag. As a result, to mitigate the interference of synchrony, candidate
time delays are restricted to the set of local maxima of the TDCCM curve.
A local maximum at delay ξ is defined as a point satisfying:

ρY→X,ξ > ρY→X,ξ− 1, ρY→X,ξ > ρY→X,ξ+1 18

Let ΞYX represent the set of time lags at which the causal influence
calculated by TDCCM from Y to X reaches local maxima. Then, the
optimal time delay that has the maximum causal strength from Y to X
can be calculated by:

ξYX = arg max
ξ⩾0,ξ∈ΞYX

(
ρY→X,ξ

)
19

By limiting the optimal time delay to local maxima with values
exceeding zero in Eq. (19), false causal delays introduced by synchrony
at early time delays can be excluded. Similarly, the optimal time delay
from Y to Z along the causal path Y → Z → X can be determined by:

ξX
YZ = arg max

0⩽ξ⩽ξYX ,ξ∈ΞYZ

(
ρY→Z,ξ

)
20

where ξX
YZ is the optimal time delay from Y to Z along the causal path Y

→ Z → X, which is less than ξYX.
Then, inspired by Eq. (16), the direct causal strength from Y to X at

timedelay ξYX can be expressed as:

ρY→X|Z,ξYX
= ppcc

(
ŷX→Y,ξYX

tmin :L− ξYX
, ytmin :L− ξYX

⃒
⃒
⃒ŷZ→Y,ξX

YZ
tmin :L− ξYX

)
21

Eq. (21) indicates that if the causal influence of Y on X at the optimal
time delay ξYX can be weakened by considering the causal influence of Y
on Z at the optimal time delay ξX

YZ, it suggests that the causal link from Y
to X is affected by Z. Based on Eq. (21), when considering a varying
time delay γ from Y to X considering Z, TDPCM can be described by:

ρY→X|Z,γ = ppcc
(

ŷX→Y,γ
tmin :L− γ , ytmin :L− γ

⃒
⃒
⃒ŷZ→Y,ξX

YZ − ξYX+γ
tmin :L− γ

)
22

where ρY→X|Z,γ denotes the direct causal strength from Y to X considering
Z at time delay γ calculated by TDPCM. TDPCM is also influenced by the
synchrony-induced false causality, therefore the direct causal influence
delay from Y to X calculated by TDPCM is determined by:

γYX = arg max
γ⩾0,γ∈ΠYX

(
ρY→X,γ

)
23

where ΠYX represents the set of time lags at which the causal influence
calculated by TDPCM from Y to X reaches local maxima.

It should be noted that Eq. (22) only considers a single potential
disturbing variable. If N potential disturbing variables Z = {Z1, …,

ZQ} exist, TDPCM can be extended by jointly considering all the pred
icted time series obtained by disturbing variables. First, we define a st
ackedvector at time delay γ as:

Uγ =

[

ŷX→Y,γ
tmin :L− γ, ytmin :L− γ , ŷ

Z1→Y,ξX
YZ1

− ξYX+γ
tmin :L− γ ,…, ŷ

ZN→Y,ξX
YZN

− ξYX+γ
tmin :L− γ

]

24

Let Σγ = Cov
(
Uγ

)
be the full covariance matrix of Uγ and Ωγ = Σ− 1

γ

be its precision matrix. Then, TDPCM considering multiple disturbing
variables can be calculated by:

Fig. 4. Flowchart of the debutanizer column.

Table 1
Monitoring variables on the debutanizer column case.

Monitoring variables Variable description Unit

U1 Top Temperature ◦C
U2 Top pressure kg/cm2

U3 Reflux flow m3/h
U4 Flow to next process m3/h
U5 6th tray temperature ◦C
U6 Bottom temperature A ◦C
U7 Bottom temperature B ◦C

Fig. 5. Variation of FNN with increasing embedding dimension for different
variables on the debutanizer column case.
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ρY→X|Z,γ =

(
Ωγ

)

12̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Ωγ

)

11

(
Ωγ

)

22

√ 25

Compared to PCM given by Eq. (16), TDPCM given by Eqs. (22) 
and (24) has the following improvements:

• PCM eliminates the indirect causality by considering the predicted
trajectory matrix of disturbing variables. For complex industrial
processes with numerous variables, however, it necessitates exam
ining all possible causal paths [39], significantly increasing compu
tational efforts. For example, if four time series W, X, Y, Z exist, when
considering the causal impact of W on Z, the following causal paths

Fig. 6. Causal strength of each auxiliary variable on the KPI on the debutanizer column case: (a) TDCCM; (b) TDPCM.

Table 2
Coefficient of variation of auxiliary variables on the debutanizer col
umn case.

Monitoring variables Coefficients of variation

U1 0.3552
U2 0.0430
U3 0.3652
U4 0.2417
U5 0.1498
U6 0.2266
U7 0.2549
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need to be considered for PCM: W → X → Z, W → Y → Z, W → X → Y 
→ Z and W → Y → X → Z. On the contrary, for TDPCM, the indirect 
causality is eliminated by considering the trajectory matrices of the 
disturbing variables directly, making it more suitable for applica
tions in multivariable industrial processes. For the above example, 
the following causal paths need to be considered for TDPCM: W → X 
and W → Y. A comparison of their computational complexity is given 
in Section 3.4.

• PCM emphasizes the maximum causal strength across all time delays 
rather than the causal strength at a specific one, limiting its ability to 
select features from various time points. In contrast, TDPCM quan
tifies the direct causal strength across all time delays, facilitating 
causal feature selection for soft sensor modeling. Besides, the time 
delay constraint in the propagation of causal influence among vari
ables and the synchrony-induced false causality are both considered 
in TDPCM.

The procedures for calculating TDCCM and TDPCM are summarized 
in Algorithm 1.

Remark 1 The hyper-parameters for time-delayed cross mapping are 
the embedding dimension E and the embedding time delay τ. In this 
study, the embedding dimension is computationally determined using 

the false nearest neighbor (FNN) method [42]. Since the sampling in
terval of industrial time series is typically longer than its intrinsic dy
namics, τ is set to 1. Sensitivity analysis is also conducted in Section 
4.1.4 to verify the effectiveness of parameter settings.

Remark 2: Although TDPCM relies on the partial PCC which is a 
linear method, its combination with state space reconstruction is often 
adequate for general industrial processes. State-space reconstruction can 
transform nonlinear system dynamics into a higher-dimensional space, 
in which causal relationships can be manifested in an approximately 
linear form, especially for processes with smooth dynamics and rela
tively stable operating regimes. Nevertheless, when strong nonlinear 
confounding remains after reconstruction, the direct causal strength 
estimated by TDPCM may be biased, and its result should be interpreted 
with caution in such cases.

Algorithm 1: TDCCM and TDPCM calculation.

Input:
1. Time-series dataset containing the KPI X and auxiliary variables Y1, Y2, … YM
2. Maximum time delay d
Output:
1. The causal strength of all auxiliary variables to the KPI across the given time delay 

range as calculated by TDCCM and TDPCM
Procedure:
# Compute TDCCM for all variable pairs
1. for each ordered pair (i, k) with i ∕= k do:
2. Compute ρYi→Yk ,ξ via Eq. (13), ξ = 0, …, d
3. end for
4. for each auxiliary variable Yj do:
5. Compute ρYj→X,ξ via Eq. (13), ξ = 0, …, d
6. end for
# Determine optimal delays for Yj → X
7. for each auxiliary variable Yj do:
8. Determine the set of time lags ΞYjX at which the causal influence calculated by 

TDCCM from Yj to X reaches local maxima
9. Determine ξYjX via Eq. (19)
10. end for
# Determine optimal delays Yj → Yi for disturbing variables
11. for each auxiliary variable Yj do:
12. Identify disturbing variable set Y\j = {Yi|i = 1,…,M, i ∕= j}
13. for each Yi ∈ Y\j do:
14. Determine the set of time lags ΞYjYi at which the causal influence calculated 

by TDCCM from Yj to Yi reaches local maxima
15. Determine ξYjYi via Eq. (20)
16. end for
17. end for
# Compute TDPCM considering multiple disturbing variables for Yj → X
18. for each auxiliary variable Yj do:
19. Construct stacked vector Uγ via Eq. (24), γ = 0, …, d

(continued on next page)

Fig. 7. Variation of PCM values between auxiliary variables and the KPI at the causal influence delay with increasing sample size.

Fig. 8. Schematic diagram of the data division strategy.

S.-S. Chen et al.                                                                                                                                                                                                                                 Advanced Engineering Informatics 71 (2026) 104337 

8 



(continued )

Algorithm 1: TDCCM and TDPCM calculation.

20. Compute covariance and precision matrix
21. Compute ρY→X|Y\j ,γ

, γ = 0, …, d

22. end for

3.3. Causal feature selection

After developing the time-delayed cross mapping techniques, the 
next key issue is determining causal features for industrial soft sensor 
modeling based on their results. Typically, an empirical threshold is 
employed by analysts and features whose strength exceeds the threshold 
are added to the inputs. However, this empirical approach depends 
heavily on expert experience and is difficult to justify rigorously. If the 

threshold is set too low, redundant features may be introduced; if set too 
high, critical variables may be excluded. To overcome these limitations, 
we propose a data-driven method to determine the selection threshold 
objectively. The available data are divided into a training set and a 
validation set, where the training set is used to construct the soft sensor 
model and the validation set is used to optimize the selection threshold. 
The proposed method is built upon the following assumptions: 

(1) Validation performance reflects feature suitability

A feature subset is considered more appropriate if it leads to better 
predictive performance on the validation set. This assumption is widely 
adopted in data-driven modeling and provides an objective criterion for 
comparing candidate feature sets. In this study, root mean square error 

Fig. 9. Selected features of each auxiliary variable with optimized threshold on the debutanizer column case: (a) TDCCM; (b) TDPCM.
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Fig. 10. Variation of performance metrics with increasing sample size of the training set using different feature selection methods on the debutanizer column case: 
(a) R2 (b) RMSE (c) MAE.
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(RMSE) is used to evaluate model performance during parameter opti
mization. RMSE is straightforward to interpret, computationally simple, 
and sensitive to outliers, making it well-suited for assessing soft sensor 
models. If feasible, other performance metrics can also be considered as 
alternatives. 

(2) Stronger causal strength implies greater relevance

A larger causal strength indicates a stronger causal effect of an 
auxiliary variable on the KPI at a particular time delay. Therefore, fea
tures associated with higher causal strength should be prioritized in the 
selection process. 

(3) The soft sensor model is deterministic without inherent 
uncertainty

Given a fixed input feature set, soft sensor provides a deterministic 
prediction of the KPI. This assumption ensures that model performance 
reflects the suitability of the chosen features rather than stochastic ef
fects arising from model uncertainty. Consequently, the validation per
formance can be reliably used to optimize the causal strength threshold. 
In this study, due to the generally limited data available for soft sensor 
modeling and the repeated training required to determine optimal 
setting values, PLS is employed because it trains quickly and has 
demonstrated reliable performance in soft sensor modeling [4,5]. If 
feasible, other models can also be considered as alternatives. For other 
regression models that involve inherent uncertainty, such as deep 

Table 3 
Evaluation results of different feature selection methods on the debutanizer 
column case.

Methods R2 RMSE MAE

PCC [10] 0.7012 ± 0.0229 
(0.6317, 0.7156)

0.1056 ± 0.0039 
(0.1031, 0.1173)

0.0859 ± 0.0042 
(0.0831, 0.0988)

CMI [22] 0.5613 ± 0.0159 
(0.5399, 0.5951)

0.1280 ± 0.0023 
(0.1230, 0.1311)

0.1032 ± 0.0020 
(0.0990, 0.1078)

RF [14] 0.6501 ± 0.0034 
(0.6466, 0.6579)

0.1144 ± 0.0006 
(0.1131, 0.1149)

0.0937 ± 0.0006 
(0.0926, 0.0944)

TDGC 0.6243 ± 0.0217 
(0.5428, 0.6540)

0.1185 ± 0.0033 
(0.1137, 0.1307)

0.0985 ± 0.0021 
(0.0948, 0.1061)

TDTE 0.6547 ± 0.0302 
(0.6158, 0.7704)

0.1135 ± 0.0052 
(0.0929, 0.1198)

0.0981 ± 0.0045 
(0.0803, 0.1035)

TDCCM 0.7386 ± 0.0253 
(0.6783, 0.7694)

0.0987 ± 0.0047 
(0.0929, 0.1097)

0.0819 ± 0.0049 
(0.0761, 0.0934)

TDPCM 0.7191 ± 0.0039 
(0.7151, 0.7284)

0.1025 ± 0.0007 
(0.1008, 0.1032)

0.0849 ± 0.0007 
(0.0833, 0.0857)

Original 0.6048 ± 0.0084 
(0.5943, 0.6269)

0.1215 ± 0.0013 
(0.1181, 0.1232)

0.0988 ± 0.0012 
(0.0959, 0.1003)

Note: The best results are highlighted in bold and the second-best results are 
underlined. The maximum and minimum values are reported in parentheses, 
respectively.

Table 4 
Wilcoxon signed-rank test and median difference results of TDCCM on the 
debutanizer column case.

Metric Comparison R+ R- p-value Sig. (p <
0.001)

Median 
Δ

R2 TDCCM vs PCC 4911 240 1.29E- 
15

+ 0.0405

R2 TDCCM vs CMI 5151 0 1.35E- 
18

+ 0.1867

R2 TDCCM vs RF 5151 0 1.35E- 
18

+ 0.0942

R2 TDCCM vs 
TDGC

5151 0 1.35E- 
18

+ 0.1177

R2 TDCCM vs 
TDTE

5011 140 7.99E- 
17

+ 0.0881

R2 TDCCM vs 
TDPCM

4468 683 7.3E-11 + 0.0258

R2 TDCCM vs 
Original

5151 0 1.35E- 
18

+ 0.1372

RMSE TDCCM vs PCC 238 4913 1.22E- 
15

+ 0.0076

RMSE TDCCM vs CMI 0 5151 1.35E- 
18

+ 0.0306

RMSE TDCCM vs RF 0 5151 1.35E- 
18

+ 0.0166

RMSE TDCCM vs 
TDGC

0 5151 1.35E- 
18

+ 0.0203

RMSE TDCCM vs 
TDTE

151 5000 1.09E- 
16

+ 0.0158

RMSE TDCCM vs 
TDPCM

665 4486 4.89E- 
11

+ 0.0049

RMSE TDCCM vs 
Original

0 5151 1.35E- 
18

+ 0.0236

MAE TDCCM vs PCC 877 4274 4.4E-09 + 0.0043
MAE TDCCM vs CMI 0 5151 1.35E- 

18
+ 0.0228

MAE TDCCM vs RF 1 5150 1.39E- 
18

+ 0.0131

MAE TDCCM vs 
TDGC

0 5151 1.35E- 
18

+ 0.0175

MAE TDCCM vs 
TDTE

77 5074 1.31E- 
17

+ 0.0182

MAE TDCCM vs 
TDPCM

1128 4023 4.75E- 
07

+ 0.0040

MAE TDCCM vs 
Original

0 5151 1.35E- 
18

+ 0.0182

Table 5 
Wilcoxon signed-rank test and median difference results of TDPCM on the 
debutanizer column case.

Metric Comparison R+ R- p-value Sig. (p <
0.001)

Median 
Δ

R2 TDPCM vs PCC 5150 1 1.39E- 
18

+ 0.0047

R2 TDPCM vs CMI 5151 0 1.35E- 
18

+ 0.1601

R2 TDPCM vs RF 5151 0 1.35E- 
18

+ 0.0689

R2 TDPCM vs 
TDGC

5151 0 1.35E- 
18

+ 0.0911

R2 TDPCM vs 
TDTE

5141 10 1.82E- 
18

+ 0.0561

R2 TDPCM vs 
Original

5151 0 1.35E- 
18

+ 0.1151

RMSE TDPCM vs PCC 1 5150 1.39E- 
18

+ 0.0009

RMSE TDPCM vs CMI 0 5151 1.35E- 
18

+ 0.0258

RMSE TDPCM vs RF 0 5151 1.35E- 
18

+ 0.0119

RMSE TDPCM vs 
TDGC

0 5151 1.35E- 
18

+ 0.0154

RMSE TDPCM vs 
TDTE

97 5054 2.34E- 
17

+ 0.0098

RMSE TDPCM vs 
Original

0 5151 1.35E- 
18

+ 0.0191

MAE TDPCM vs PCC 2912 2239 0.8732 / − 0.0010
MAE TDPCM vs CMI 0 5151 1.35E- 

18
+ 0.0189

MAE TDPCM vs RF 0 5151 1.35E- 
18

+ 0.0087

MAE TDPCM vs 
TDGC

0 5151 1.35E- 
18

+ 0.0133

MAE TDPCM vs 
TDTE

10 5141 1.82E- 
18

+ 0.0123

MAE TDPCM vs 
Original

0 5151 1.35E- 
18

+ 0.0138
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learning models, how to combine time-delayed cross mapping methods 
with them into the design of soft sensors will be a key focus of future 
research. Model adaptability analysis is also conducted in Section 4.1.4 
using Gaussian-kernel support vector regression. 

(4) Historical measurements preceding the causal delay do not 
contribute to the KPI

Historical measurements with time lags shorter than the causal in
fluence delay identified by time-delayed cross mapping methods are 
assumed not to affect the KPI. For example, if variable Y affects variable 
X at a lag of five time steps, then measurements of Y at time delays one to 
four relative to time point l do not contribute to predicting x(l). This 
assumption prevents the inclusion of non-informative or weakly related 
measurements during feature selection. Ablation study on this constraint 
is also conducted in Section 4.1.4.

Based on the above assumptions, the feature set is constructed based 
on causal threshold optimization, which consists of continuous histori
cal measurements of each auxiliary variable starting from the identified 
causal time delay. The procedures for feature selection are presented as 

follows:
Step 1: Initialization. Split the given dataset into training and vali

dation sets. Specify the maximum time delay d and the value space for 
the index threshold as C = {c1, c2, …, cD}.

Step 2: Feature set construction. For each index threshold ci, the 
continuous historical measurements of auxiliary variables with TDPCM 
values greater than ci and time delays larger than causal influence delay 
are selected as model inputs for soft sensor modeling. A soft sensor 
model is then constructed using the training set, and its performance is 
evaluated on the validation set to obtain the performance corresponding 
to ci. After evaluating the model performance across all possible index 
thresholds, the threshold that yields the best performance is selected as 
the optimal index threshold, denoted cbest. And, the features selected 
based on cbest constitute the feature set.

The above feature selection procedures are summarized in Algorithm 
2.

Remark 3 A predefined threshold candidate set C is required before 
training. To construct this, we propose a simple and objective approach: 
select D − 1 equally spaced values between the lowest and highest 
TDPCM values obtained across all auxiliary variables, and additionally 

Fig. 11. Comparison between predicted and actual values for each method on the debutanizer column case.
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include the maximum TDPCM value for each individual auxiliary vari
able. This approach integrates a global perspective while simultaneously 
capturing local characteristics. As a result, the constructed threshold 
space is both comprehensive and representative, facilitating effective 
feature selection.

Algorithm 2: Feature selection based on the results of time-delayed cross mapping.

Input:
1. Time-series dataset containing the KPI X and auxiliary variables Y1, Y2, … YM
2. Threshold candidate set C = {c1, c2,…, cD}
3. Maximum time delay d
4. TDCCM and TDPCM values from all auxiliary variables to the KPI across given 

time delays
Output:
1. Selected features for soft sensor modeling
Procedure:
1. for each index threshold ci ∈ C do:
2. Initialize selected feature set F (ci)←∅
3. for each auxiliary variable Yj do:
4. Determine the causal influence delay δj via Eq. (19) for TDCCM and Eq. (23) 

for TDPCM
5. Set γ ← δj

(continued on next column)

(continued )

Algorithm 2: Feature selection based on the results of time-delayed cross mapping.

6. while γ ≤ d and ρY→X,γ⩾ci for TDCCM, or γ ≤ d and ρY→X|Y\j ,γ
⩾ci for TDPCM do

7. F (ci)←F (ci) ∪
{

yj(t − γ)
}

8. γ←γ + 1
9. end while
10. end for
11. Train a soft sensor model using F (ci) on the training set
12. Evaluate its performance on the validation set and record the score J(ci)

13. end for
14. Select the optimal threshold cbest = argmin

ci∈C
J(ci)

15. Return the final selected feature set F (cbest)

3.4. Complexity analysis

First, the computational complexity of TDCCM is analyzed. For a 
single TDCCM computation at a given time delay, E + 1 nearest neigh
bors are identified in the reconstructed space for each embedding vector, 
and the effective number of embedding vectors approaches L* =

L − (E − 1)τ. Therefore, considering d + 1 different time delays, the 
complexity per variable pair scales as O(dEL*). The construction of 
trajectory matrices and the calculation of PCC introduce additional 
computational costs of O(L*) per time delay, which are negligible 
compared to the nearest neighbor search. Since there are M auxiliary 
variables in total, the overall computational complexity of TDCCM is O 
(M2dEL*). In practice, since E is usually much smaller than L*, the 
complexity can be approximately regarded as O(M2dL*).

After performing TDCCM analysis, the optimal delays between var
iables are selected. Then, TDPCM employs the PPCC to calculate the 
direct causal strength between auxiliary variables and the KPI. Since the 
costs of delay selection and PPCC computation are negligible, the overall 
computational complexity of the TDPCM is dominated by that of 
TDCCM.

Table 6 
Selected features of different methods on the debutanizer column case.–

Methods U1 U2 U3 U4

PCC / 1 – 50 1 – 50 /
CMI 1 – 49 / 1 – 49 1 – 49
RF 1, 3, 5, 9, 11, 13, 15 – 16, 19 – 20, 22 – 24, 30 – 31, 39, 66, 72, 77, 79, 

81 – 82, 88, 91 – 93, 97, 100
/ 2 – 18, 22, 28 – 30, 62, 

78 – 79, 96
1, 5 – 6, 9, 11 – 14, 21, 24 – 27, 29 – 38, 50, 52, 76 – 
77, 82 – 83, 89 – 100

TDGC 7 – 62 13 – 
100

5 – 42 12 – 60

TDTE 13 – 69 / / 51 – 100
TDCCM 8 – 26 / 11 – 38 31 – 52
TDPCM 6 – 100 27 – 58 10 – 100 23 – 100
Original 1 – 100 1 – 100 1 – 100 1 – 100
Methods U5 U6 U7 Total number
PCC 1 – 50 1 – 50 1 – 50 250
CMI 1 – 49 1 – 49 1 – 49 294
RF 1 – 2, 11 – 16, 18 – 20, 22 – 24, 30, 43 – 44, 59, 65, 68, 70 – 71, 74, 80, 

91, 95, 100
60 52, 64, 89 125

TDGC 7 – 100 7 – 23 7 – 100 436
TDTE 6 – 14 / / 116
TDCCM 9 – 38 26 – 28 24 – 26 105
TDPCM 7 – 42 9 – 24 10 – 19 358
Original 1 – 100 1 – 100 1 – 100 700

Table 7 
Evaluation results based on TDCCM under different parameter settings on the 
debutanizer column case.

Parameter settings R2 RMSE MAE

E = 3, τ = 1 0.7243 ± 0.0330 0.1013 ± 0.0060 0.0840 ± 0.0064
E = 4, τ = 1 0.7386 ± 0.0253 0.0987 ± 0.0047 0.0819 ± 0.0049
E = 5, τ = 1 0.7359 ± 0.0295 0.0992 ± 0.0055 0.0823 ± 0.0057
E = 6, τ = 1 0.7355 ± 0.0263 0.0989 ± 0.0042 0.0820 ± 0.0039
E = 4, τ = 2 0.7203 ± 0.0133 0.0996 ± 0.0026 0.0839 ± 0.0019
E = 4, τ = 3 0.7191 ± 0.0153 0.1049 ± 0.0020 0.0851 ± 0.0020
E = 4, τ = 4 0.6832 ± 0.0307 0.1088 ± 0.0049 0.0898 ± 0.0051

Table 8 
Evaluation results based on TDPCM under different parameter settings on the 
debutanizer column case.

Parameter settings R2 RMSE MAE

E = 3, τ = 1 0.7017 ± 0.0684 0.1049 ± 0.0120 0.0902 ± 0.0125
E = 4, τ = 1 0.7191 ± 0.0039 0.1025 ± 0.0007 0.0849 ± 0.0007
E = 5, τ = 1 0.6684 ± 0.0342 0.1112 ± 0.0056 0.0945 ± 0.0040
E = 6, τ = 1 0.7094 ± 0.0200 0.1032 ± 0.0037 0.0845 ± 0.0041
E = 4, τ = 2 0.6100 ± 0.0153 0.1207 ± 0.0023 0.0977 ± 0.0019
E = 4, τ = 3 − 0.0976 ± 0.0069 0.2026 ± 0.0006 0.1552 ± 0.0008
E = 4, τ = 4 0.0255 ± 0.0950 0.1907 ± 0.0092 0.1487 ± 0.0048

Table 9 
Evaluation results of deep learning method comparisons on the debutanizer 
column case.

Methods R2 RMSE MAE

TDCCM 0.7386 ± 0.0253 0.0987 ± 0.0047 0.0819 ± 0.0049
TDPCM 0.7191 ± 0.0039 0.1025 ± 0.0007 0.0849 ± 0.0007
LSTM 0.4180 ± 0.1043 0.1469 ± 0.0126 0.1106 ± 0.0120
GRU 0.2757 ± 0.1347 0.1639 ± 0.0147 0.1171 ± 0.0134
Transformer 0.2954 ± 0.1167 0.1618 ± 0.0132 0.1249 ± 0.0133
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Fig. 12. RMSE of the ablation study on the causal influence delay constraint 
calculated by TDCCM for the debutanizer column case: (a) validation set; (b) 
test set.

Fig. 13. RMSE of the ablation study on the causal influence delay constraint 
calculated by TDPCM for the debutanizer column case: (a) validation set; (b) 
test set.

Table 11 
Evaluation results of the ablation study on the causal influence delay constraint 
on the debutanizer column case.

Methods R2 RMSE MAE

TDCCM (original) 0.7386 ±
0.0253

0.0987 ±
0.0047

0.0819 ±
0.0049

TDPCM (original) 0.7191 ±
0.0039

0.1025 ±
0.0007

0.0849 ±
0.0007

TDCCM (lag 
extension)

0.7308 ±
0.0223

0.1002 ±
0.0041

0.0834 ±
0.0036

TDPCM (lag 
extension)

0.6853 ±
0.0468

0.1082 ±
0.0079

0.0912 ±
0.0070

Table 12 
Empirical wall-clock times for the four causal 
inference methods on the debutanizer column 
case.

Methods Runtime (s)

TDGC 0.326
TDTE 176.046
TDCCM 853.170
TDPCM 855.241

Table 10 
Evaluation results of model adaptability analysis using SVR on the debutanizer 
column case.

Methods R2 RMSE MAE

PCC 
[10]

0.3809 ± 0.0106 
(0.3601, 0.3962)

0.1521 ± 0.0013 
(0.1502, 0.1547)

0.1111 ± 0.0013 
(0.1090, 0.1132)

CMI 
[22]

0.1985 ± 0.0076 
(0.1766, 0.2143)

0.1731 ± 0.0008 
(0.1714, 0.1754)

0.1285 ± 0.0015 
(0.1252, 0.1317)

RF [14] 0.5888 ± 0.0131 
(0.5698, 0.6403)

0.1240 ± 0.0020 
(0.1160, 0.1268)

0.0980 ± 0.0026 
(0.0886, 0.1025)

TDGC 0.2835 ± 0.0231 
(0.2294, 0.3057)

0.1636 ± 0.0026 
(0.1611, 0.1697)

0.1202 ± 0.0018 
(0.1182, 0.1289)

TDTE 0.4267 ± 0.0242 
(0.3853, 0.4547)

0.1464 ± 0.0031 
(0.1428, 0.1516)

0.1203 ± 0.0023 
(0.1166, 0.1254)

TDCCM 0.6538 ± 0.0176 
(0.6080, 0.6717)

0.1137 ± 0.0028 
(0.1108, 0.1211)

0.0909 ± 0.0022 
(0.0886, 0.0965)

TDPCM 0.6333 ± 0.0119 
(0.6191, 0.6587)

0.1192 ± 0.0018 
(0.1155, 0.1208)

0.0935 ± 0.0017 
(0.0888, 0.0953)

Original 0.6058 ± 0.0083 
(0.5945, 0.6269)

0.1214 ± 0.0013 
(0.1181, 0.1231)

0.0987 ± 0.0012 
(0.0959, 0.1003)

Note: The best results are highlighted in bold and the second-best results are 
underlined. The maximum and minimum values are reported in parentheses, 
respectively.
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Then, we analyze the computational complexity of the feature se
lection strategy. Let the computational complexity of a single training 
and validation of the soft sensor model with m input features be denoted 
as Tmodel(m). In Step 2, the soft sensor model is trained and validated for 
each candidate threshold ci. A total of k model training and validation 
operations are conducted in this step. Therefore, the computational 
complexity of the proposed feature selection strategy is O(kTmodel(m) ), 
where m represents the average number of selected features after 
screening.

Remark 4 If the original calculation method of PCM is used, where 
the predicted trajectory matrix of disturbing variables must be con
structed, additional steps are required, including nearest-neighbor 
searches and exploration of all possible causal paths. For a system 
with M variables, the maximum depth of a causal path can reach M − 2. 

At this point, after performing TDCCM analysis, the computational 
complexity of PCM becomes O(MM− 2dL*) when considering all time 
delays, which is much higher than the computational complexity of the 
proposed method.

4. Experiments

In this section, two real-world industrial cases are introduced to 
implement the proposed method. To show the superiority of the pro
posed feature selection method based on time-delayed cross mapping, 
the following methods are employed for comparison: 

• Feature selection approaches that ignore the impact of time delay, 
including correlation-based method PCC [10] and causality-based 
method CMI [22]. For both methods, it is necessary to determine 
appropriate threshold values for their respective metrics, as well as 
the time range to be considered. These parameters are optimized 
based on the model performance on the validation set.

• State-of-the-art model training-based feature selection method RF 
[14]. For this method, we rank the feature importance and select 
features based on the model performance on the validation set.

• Feature selection approaches based on baseline time-series causal 
inference methods with the time-delay framework, including TDGC 

Fig. 14. Flowchart of the CSTR.

Table 13 
Monitoring variables on the CSTR case.

Monitoring variables Variable description Unit

S1 Liquid level in the reactor m
S2 Coolant flow rate L/ 

min
S3 Coolant temperature in the cooling jacket K
S4 Reactor temperature K
S5 Feed flow rate of the reactor feed stream L/ 

min
S6 Outlet flow rate of the reactor L/ 

min
S7 Reactant concentration in the reactor feed stream mol/L
S8 Reactor feed temperature K
S9 Inlet coolant temperature K

Fig. 15. True causal network of the CSTR system.

Fig. 16. Variation of FNN with increasing embedding dimension for different 
variables on the CSTR case.
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and TDTE. For these methods, the proposed feature selection strategy 
is employed.

• Original soft sensor model without any feature selection methods, 
which is also known as the sliding window technique for time series 
prediction [43].

The implementation details of all the feature selection methods are 
provided in Appendix A. In order to compare the performance of soft 
sensor models, three widely used metrics are employed: coefficient of 
determination (R2), RMSE and mean absolute error (MAE). For all the 
feature selection methods, PLS is used for soft sensor modeling.

4.1. Debutanizer column

4.1.1. Dataset description
The debutanizer column plays an important role in petroleum 

refining, particularly in naphtha cracking and desulfurization. The 
flowchart of the debutanizer column is illustrated in Fig. 4, with detailed 
descriptions of monitoring variables provided in Table 1. Specifically, 
U1 represents the temperature at the top of the column, directly 

influencing vapor composition and condensation behavior. U2 indicates 
the pressure at the overhead of the column, affecting both the purity of 
separated products and overall separation efficiency. U3 controls the 
liquid reflux returned to the column, significantly impacting product 
purity and operational stability. U4 describes the rate at which the top 
product is transferred to subsequent refining stages, reflecting process 
throughput. U5 provides a mid-column temperature reading, which can 
be regarded as a sensitive indicator of internal separation efficiency and 
composition gradients. U6 and U7 measure temperatures in the bottom 
section of the column. These are essential for managing the vaporization 
conditions and ensuring the minimized butane content.

Minimizing the butane content in the bottom of the distillation col
umn is crucial for enhancing product quality. However, in practical 
applications, the gas chromatography method commonly used to mea
sure butane content suffers from significant time delays, which impedes 
real-time system control and thus affects product performance. There
fore, it is necessary to establish a soft sensor model to estimate butane 
content online. To achieve this, the above seven easily measurable 
auxiliary variables physically related to the butane content are recorded, 
denoted as U1-U7, and the butane content is denoted as U8, which is the 

Fig. 17. Causal strength of each auxiliary variable on the KPI on the CSTR case: (a) TDCCM; (b) TDPCM.

S.-S. Chen et al.                                                                                                                                                                                                                                 Advanced Engineering Informatics 71 (2026) 104337 

16 



KPI to be predicted. Further details on debutanizer column can be found 
in [44].

In this study, there are a total of 2194 samples gathered from the 
process, sourced from [44]. The first 1596 samples are used for causal 
inference and model establishment, and the remaining 598 samples are 
reserved for model testing. Before analysis, all variables are scaled using 
min–max normalization.

4.1.2. Causal inference
As stated in Remark 1, the hyper-parameters for causal inference 

based on time-delayed cross mapping are the embedding dimension E 
and the embedding time delay τ, where E is determined according to the 
FNN method, and τ is set to a default value of 1. Fig. 5 shows the vari
ation of the FNN with the embedding dimension for all the variables in 
the debutanizer column case. An embedding dimension of E = 4 is 
selected, as it is the first dimension at which all FNN values drop below 
5 %.

Then, according to Algorithm 1, the causal inference results of 
TDCCM and TDPCM can be obtained. A negative lag search window of 
50 is employed to identify potential synchrony-induced false causality. 
Fig. 6 presents the causal strength with time delay of each auxiliary 
variable on the KPI as calculated by TDCCM and TDPCM. It indicates 

that U1, U3 and U5 have strong causal impacts on the KPI, whereas U2, 
U4, U6 and U7 show relatively weak causal relationships. This result can 
be explained by process knowledge: U1 reflects the extent of butane 
removal; U3 determines the efficiency of mass transfer, which governs 
the separation process; and U5 provides information about the compo
sition variation. They all have strong causal impacts on the KPI. In 
contrast, U6 and U7 are influenced by the KPI rather than affecting it, 
resulting in weak causal impacts. Although U2 is theoretically expected 
to have a strong causal impact on the KPI, its influence is not detected. 
This is likely because U2 is tightly constrained in the process, exhibiting 
very limited variability. As listed in Table 2, the coefficient of variation 
of U2 is only 0.043, far below those of other auxiliary variables. 
Compared with TDCCM, the causal strength of U3 and U5 calculated by 
TDPCM remains unchanged, indicating that their impacts on the KPI are 
predominantly direct. The above analysis demonstrates that the causal 
inference results show satisfactory consistency with the process 
knowledge.

Fig. 7 illustrates how PCM values between auxiliary variables and the 
KPI at the causal influence delay vary with increasing sample size. From 
Fig. 7, all auxiliary variables tend to converge toward stable values, 
showing the robustness of the causal inference results.

Fig. 18. Selected features of each auxiliary variable with optimized threshold on the CSTR case: (a) TDCCM; (b) TDPCM.
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Fig. 19. Variation of performance metrics with increasing sample size of the training set using different feature selection methods on the CSTR case: (a) R2 (b) RMSE 
(c) MAE.
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4.1.3. Soft sensor modeling results and comparisons
Time-delayed causality analysis introduces a temporal shift between 

the auxiliary variables and the KPI. With a maximum time delay d of 
100, the first 100 samples of KPI cannot be labeled because the corre
sponding historical measurements of auxiliary variables are unavailable. 
As a result, 1496 effective labeled samples are available for model 
development. When developing soft sensor models, it is essential to 
confirm that the model trained on the training set maintains satisfactory 
performance on unseen future data. However, the training and valida
tion sets are always divided randomly in practice, which can influence 

the model performance. If the model results are significantly affected by 
the dataset division, it suggests weak model stability and introduces 
substantial risks in practical applications. To systematically evaluate the 
stability of different methods, we vary the sizes of the training set from 
1000 to 1400 samples in steps of 1, while keeping the total number of 
training and validation samples fixed at 1496. Notably, to avoid infor
mation leakage in the prediction task, the time series samples are not 
shuffled. Instead, a chronological cutoff point is selected on the time 
axis, and all observations before the cutoff form the training set while 
the remaining observations form the validation set. In this way, the 
temporal order of the data is strictly preserved, and models are always 
trained on past data and validated on future data. Taking a training set 
sample size of 1350 as an example, the data division strategy is shown in 
Fig. 8. The test set corresponds to the last segment of the time series and 
is used only for final performance evaluation, after causal feature se
lection, threshold determination and hyper-parameter tuning have been 
completed.

For model establishment, PLS is used for soft sensor modeling com
bined with a specific feature selection method, with n_components = 3. 
The causal features are selected according to Algorithm 2. Taking a 
training set sample size of 1350 as an example, Fig. 9 highlights the 
selected features with the optimized index threshold by TDCCM and 
TDPCM. It can be seen that features from U1, U3, U4 and U5 are selected 
across a long time range, while features from other auxiliary variables 
are selected in a limited time range. Notably, some features from U6 and 
U7 are included, possibly due to their relevance to the historical state of 
the KPI.

The performance metrics on the test set with increasing sample size 
of the training set using different feature selection methods are shown in 

Table 14 
Evaluation results of different feature selection methods on the CSTR case.

Methods R2 RMSE MAE

PCC [10] 0.6711 ± 0.0172 
(0.6378, 0.6933)

0.0951 ± 0.0025 
(0.0919, 0.0998)

0.0750 ± 0.0025 
(0.0716, 0.0794)

CMI [22] 0.7276 ± 0.0250 
(0.6771, 0.7538)

0.0865 ± 0.0039 
(0.0823, 0.0943)

0.0677 ± 0.0034 
(0.0638, 0.0743)

RF [14] 0.3975 ± 0.0131 
(0.3776, 0.4151)

0.1287 ± 0.0014 
(0.1269, 0.1309)

0.1038 ± 0.0012 
(0.1024, 0.1056)

TDGC 0.4250 ± 0.0486 
(0.2359, 0.4624)

0.1257 ± 0.0050 
(0.1216, 0.1450)

0.0989 ± 0.0043 
(0.0958, 0.1153)

TDTE 0.0949 ± 0.0560 
(0.0354, 0.1812)

0.1577 ± 0.0049 
(0.1501, 0.1629)

0.1293 ± 0.0034 
(0.1240, 0.1327)

TDCCM 0.7852 ± 0.0342 
(0.7000, 0.8163)

0.0767 ± 0.0058 
(0.0711, 0.0908)

0.0609 ± 0.0051 
(0.0561, 0.0741)

TDPCM 0.7735 ± 0.0123 
(0.7546, 0.7902)

0.0789 ± 0.0021 
(0.0760, 0.0822)

0.0614 ± 0.0017 
(0.0590, 0.0641)

Original 0.2813 ± 0.0329 
(0.2344, 0.3347)

0.1406 ± 0.0032 
(0.1353, 0.1451)

0.1116 ± 0.0027 
(0.1071, 0.1153)

Note: The best results are highlighted in bold and the second-best results are 
underlined. The maximum and minimum values are reported in parentheses, 
respectively.

Table 15 
Wilcoxon signed-rank test and median difference results of TDCCM on the CSTR 
case.

Metric Comparison R+ R- p-value Sig. (p <
0.001)

Median 
Δ

R2 TDCCM vs PCC 231 0 3.21E-05 + 0.1256
R2 TDCCM vs CMI 221 10 0.000131 + 0.0661
R2 TDCCM vs RF 231 0 3.21E-05 + 0.3958
R2 TDCCM vs 

TDGC
231 0 3.21E-05 + 0.3690

R2 TDCCM vs 
TDTE

231 0 3.21E-05 + 0.7174

R2 TDCCM vs 
TDPCM

166 65 0.04112 / 0.0160

R2 TDCCM vs 
Original

231 0 3.21E-05 + 0.5128

RMSE TDCCM vs PCC 0 231 3.21E-05 + 0.0204
RMSE TDCCM vs CMI 9 222 0.000115 + 0.0117
RMSE TDCCM vs RF 0 231 3.21E-05 + 0.0538
RMSE TDCCM vs 

TDGC
0 231 3.21E-05 + 0.0515

RMSE TDCCM vs 
TDTE

0 231 3.21E-05 + 0.0825

RMSE TDCCM vs 
TDPCM

61 170 0.03027 / 0.0030

RMSE TDCCM vs 
Original

0 231 3.21E-05 + 0.0665

MAE TDCCM vs PCC 1 230 3.71E-05 + 0.0154
MAE TDCCM vs CMI 19 212 0.000424 + 0.0081
MAE TDCCM vs RF 0 231 3.21E-05 + 0.0445
MAE TDCCM vs 

TDGC
0 231 3.21E-05 + 0.0398

MAE TDCCM vs 
TDTE

0 231 3.21E-05 + 0.0696

MAE TDCCM vs 
TDPCM

86 145 0.1567 / 0.0011

MAE TDCCM vs 
Original

0 231 3.21E-05 + 0.0522

Table 16 
Wilcoxon signed-rank test and median difference results of TDPCM on the CSTR 
case.

Metric Comparison R+ R- p-value Sig. (p <
0.001)

Median 
Δ

R2 TDPCM vs PCC 231 0 3.21E- 
05

+ 0.0998

R2 TDPCM vs CMI 231 0 3.21E- 
05

+ 0.0392

R2 TDPCM vs RF 231 0 3.21E- 
05

+ 0.3706

R2 TDPCM vs TDGC 231 0 3.21E- 
05

+ 0.3428

R2 TDPCM vs TDTE 231 0 3.21E- 
05

+ 0.687

R2 TDPCM vs 
Original

231 0 3.21E- 
05

+ 0.4991

RMSE TDPCM vs PCC 0 231 3.21E- 
05

+ 0.0162

RMSE TDPCM vs CMI 0 231 3.21E- 
05

+ 0.0066

RMSE TDPCM vs RF 0 231 3.21E- 
05

+ 0.049

RMSE TDPCM vs TDGC 0 231 3.21E- 
05

+ 0.0458

RMSE TDPCM vs TDTE 0 231 3.21E- 
05

+ 0.0786

RMSE TDPCM vs 
Original

0 231 3.21E- 
05

+ 0.0626

MAE TDPCM vs PCC 0 231 3.21E- 
05

+ 0.013

MAE TDPCM vs CMI 0 231 3.21E- 
05

+ 0.0056

MAE TDPCM vs RF 0 231 3.21E- 
05

+ 0.0418

MAE TDPCM vs TDGC 0 231 3.21E- 
05

+ 0.0365

MAE TDPCM vs TDTE 0 231 3.21E- 
05

+ 0.0676

MAE TDPCM vs 
Original

0 231 3.21E- 
05

+ 0.0509
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Fig. 10. It can be seen that the performance on the test set does not 
monotonically increase with larger training set sizes but instead fluc
tuates for several feature selection methods. This behavior is primarily 
due to the presence of irrelevant or weakly relevant features. When 
feature selection fails to effectively remove disturbing or weakly rele
vant lagged measurements, the resulting models become sensitive to 
redundant or interfering information [45]. In such cases, different train- 
validation splits may include different subsets of these features, which 
leads to oscillatory performance curves. Overall, models based on RF 
and TDPCM exhibit greater stability compared to other feature selection 
methods, stabilizing around a sample size of 1300. By comparison, the 
performance of other feature selection methods is affected by the dataset 
division, resulting in relatively poor model stability.

Table 3 presents the average performance, standard deviation, the 
worst performance and the best performance on the test set using 
different feature selection methods when the sample size of the training 
set exceeds 1300. For model average performance, the performance of 
CMI is worse than that of other causal feature selection methods and the 
original model, demonstrating the critical role of incorporating time 
delay in identifying causal features. PCC demonstrates strong model 
accuracy, which suggests that correlation-based approaches may 

sometimes be suitable for feature selection. Compared to TDGC, which 
focuses on linear relationships, TDTE performs better by capturing 
nonlinear relationships. However, the performance of TDTE is still 
inferior to that of TDCCM due to its dependence on the decorrelation 
assumption, which shows the superiority of the state space 
reconstruction-based causal inference techniques in industrial pro
cesses. Among all methods, TDCCM achieves the best average perfor
mance, followed by TDPCM. Compared with the existing best method 
PCC, TDCCM yields a 5.33 % increase in R2, along with 6.53 % and 4.66 
% reductions in RMSE and MAE, respectively. For model uncertainty, 
the standard deviation of RF is the best, followed by TDPCM. As the 
method with minimal risk, TDPCM achieves a 5.43 % increase in R2 and 
reductions of 5.93 % in RMSE and 8.24 % in MAE compared to the 
second-best method TDCCM in the worst scenario. Overall, the feature 
selection methods based on time-delayed cross mapping techniques 
achieve superior average performance and stability compared to exist
ing feature selection methods.

To statistically assess the performance differences between the pro
posed feature selection methods and the baseline approaches, the Wil
coxon signed-rank test is employed [46] using paired results obtained 
under identical training-validation configurations. The analysis focuses 

Fig. 20. Comparison between predicted and actual values for each method on the CSTR case.

S.-S. Chen et al.                                                                                                                                                                                                                                 Advanced Engineering Informatics 71 (2026) 104337 

20 



on the stable regime where the training sample size exceeds 1300, 
yielding 101 paired samples for each comparison. No multiple- 
comparison correction is applied, as the Wilcoxon tests are used as a 
supplementary analysis to support the observed performance 
differences.

In addition to statistical significance, the median difference (Median 
Δ) is reported to quantify the practical magnitude of the performance 
differences. Median Δ denotes the median performance improvement of 
the proposed method relative to the baseline across paired training- 
validation configurations, with positive values indicating better 
performance.

The results for TDCCM and TDPCM are reported in Tables 4 and 5. 
Across all performance metrics, existing feature selection methods differ 
significantly from TDCCM and TDPCM, highlighting the consistent su
periority of our proposed approach.

Fig. 11 shows the comparison between actual values and predicted 
values of soft sensor models constructed with different feature selection 
methods when the training set sample size is 1350. The results indicate 
that the approaches based on time-delayed cross mapping achieve su
perior accuracy in overall prediction.

Table 6 presents the detailed time-delayed features selected by each 
method when the training set sample size is 1350. For example, since 

Table 17 
Selected features of different methods on the CSTR case.

Methods S1 S2 S3 S4 S5

PCC 1 – 12 1 – 12 1 – 12 1 – 12 1 – 12
CMI 1 – 13 1 – 13 1 – 13 1 – 13 1 – 13
RF 7, 9, 17, 21, 26, 36, 47, 70, 74 1 – 2, 19, 31, 34 – 35, 84, 94, 96, 98, 100 1 – 2, 31 1 – 2, 28, 43 16
TDGC 1 – 4 1 – 15 1 – 14 1 – 11 1 – 3
TDTE 40 – 41 37 – 40 31 – 42 71 – 72 34
TDCCM 38 – 100 36 – 63 36 – 63 36 – 62 98 – 100
TDPCM 13 – 32 / / 23 – 29 40 – 41
Original 1 – 100 1 – 100 1 – 100 1 – 100 1 – 100
Methods S6 S7 S8 S9 Total number
PCC 1 – 12 1 – 12 1 – 12 / 96
CMI / 1 – 13 / / 78
RF 6 – 7, 10 – 13, 25, 31 – 32, 35 – 36, 44, 46, 54 1 – 2 / / 44
TDGC 1 – 3 1 – 2 / 20 53
TDTE 84 – 86 1 – 2 / 7 27
TDCCM 94 – 100 1 – 26 2 – 3 74 – 77 188
TDPCM 13 – 43 1 – 20 / / 80
Original 1 – 100 1 – 100 1 – 100 1 – 100 900

Fig. 21. Variation of causal strengths of S7 on the KPI with various time delays derived by different causal inference methods.

Table 18 
Evaluation results of the ablation study on the false causality identification on 
the CSTR case.

Methods R2 RMSE MAE

TDCCM (original) 0.7852 ±
0.0342

0.0767 ±
0.0058

0.0609 ±
0.0051

TDPCM (original) 0.7735 ±
0.0123

0.0789 ±
0.0021

0.0614 ±
0.0017

TDCCM (with false 
causality)

0.5462 ±
0.0364

0.1117 ±
0.0060

0.0876 ±
0.0062

TDPCM (with false 
causality)

0.6913 ±
0.0468

0.0894 ±
0.0150

0.0728 ±
0.0132

Fig. 22. True causal diagram of the chain-structured system. The numbers on 
the links denote the time delays of causal effects.
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Fig. 23. Causal inference results of TDCCM and TDPCM on the chain-structured system.

Fig. 24. Causal inference results of TDCCM and TDPCM on the chain-structured system with varying standard deviation of measurement noise: (a) 0.02; (b) 0.05; 
(c) 0.1.
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TDPCM selects 7 – 42 for U1, the input features for predicting the KPI at 
time point l include u1(l − 7) to u1(l − 42). It can be observed that TDGC- 
based method has the largest number of features, followed by TDPCM, 
while TDCCM has the lowest number of features. This suggests that the 
model performance is not determined by the mere number of features, 
and our approach improves model performance and stability by select
ing features that involve causal information.

4.1.4. Discussions

1) Sensitivity analysis on hyper-parameters

Tables 7 and 8 present the average performance and standard devi
ation on the test set using TDCCM and TDPCM under different parameter 
settings, respectively. The results indicate that TDCCM demonstrates 
low sensitivity to the E and moderate sensitivity to τ, whereas TDPCM is 
moderately sensitive to E but highly sensitive to τ. A notable drop in 
model accuracy occurs when τ surpasses 1, likely because industrial 
process data often have large sampling intervals. In such cases, an 
increased τ may hinder effective direct causality inference and feature 
selection. 

2) Comparisons with deep learning methods

Deep learning models, especially those based on recurrent and 
attention mechanisms, are widely recognized as powerful tools in soft 
sensor modeling. In this subsection, we evaluate three representative 
architectures: the long short-term memory (LSTM) network, the gated 
recurrent unit (GRU) and the Transformer. Each model is followed by a 
fully connected feedforward network for final prediction. Hyper- 
parameters are optimized using Bayesian optimization. Further 
training details are provided in Appendix B.

The evaluation results of the deep learning models on the debutan
izer column case are summarized in Table 9. It can be seen that deep 
learning models show lower predictive accuracy and higher uncertainty 
than the proposed methods, likely due to limited training data that 

makes them prone to overfitting. In contrast, the proposed causal feature 
selection methods infer time-delayed causal relationships that reflect 
process mechanisms, enabling effective generalization in data-scarce 
scenarios with better stability and interpretability. 

3) Model adaptability analysis

To assess the effectiveness of the proposed model under nonlinear 
regression, we further evaluate all feature selection methods on the 
debutanizer column case using Gaussian-kernel support vector regres
sion (SVR). The Gaussian-kernel SVR model is implemented in MATLAB 
with default hyper-parameter settings. This strategy mitigates over
fitting risks under limited data conditions and ensures that the focus 

Fig. 25. True causal diagram of the chain-structured system. The numbers on 
the links denote the time delays of causal effects.

Fig. 26. Causal inference results of TDCCM and TDPCM on the fork-structured system.

Table 19 
Implementation details of feature selection methods in the two case studies.

Methods Calculation 
method

Debutanizer column 
case

CSTR case

PCC / / /
CMI K-nearest- 

neighbor
Neighborhood size = 3 Neighborhood size = 3

RF / NumTrees = 100, 
MinLeafSize = 1, 
SplitCriterion = mse, 
random seed = 1107

NumTrees = 100, 
MinLeafSize = 1, 
SplitCriterion = mse, 
random seed = 1107

TDGC Vector 
autoregression

Model order = 3 Model order = 3

TDTE K-nearest- 
neighbor

Neighborhood size = 3 Neighborhood size = 3

TDCCM / E = 4, τ = 1 E = 7, τ = 1
TDPCM / E = 4, τ = 1 E = 7, τ = 1
Original / / /

Table 20 
Neural network architectures and hyper-parameter configurations used in the 
deep learning models.

Component Transformer GRU LSTM

Sequence length 100 100 100
Batch size 16 16 32
Learning rate 1.22 × 10-3 3.28 × 10-4 1.70 × 10-4

Dropout probability 0.4425 0.4358 0.0819
Hidden size 32 128 128
Number of layers 2 encoder layers 1 GRU layer 3 LSTM layers
Attention heads 1 / /
Feed forward dimension 512 / /
Fully connected 

regressor
2-layer (64, 64) 2-layer (32, 

16)
2-layer (32, 
128)

Training epochs 200 200 200
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remains on evaluating feature selection methods. The evaluation results 
are presented in Table 10. When the linear PLS model is replaced with 
the nonlinear SVR model, a general decline in predictive performance is 
observed across all methods. This may stem from the limited sample size 
and the use of default parameter settings. Notably, this result should not 
be viewed as a general flaw of nonlinear regression models, but rather 
reflects a specific case of the SVR model without parameter tuning. The 
original model without feature selection achieves superior performance 
to several baseline methods, suggesting that nonlinear regression can 
partially mitigate the influence of irrelevant features. Despite the overall 
performance drop, TDCCM remains the method with highest average 
performance, and TDPCM continues to provide stable performance in 
the worst-case scenarios. These results indicate that the proposed feature 
selection methods based on TDCCM and TDPCM remain effective 
regardless of the regression model used. 

4) Ablation study on the causal influence delay constraint

The proposed feature selection strategy relies on the assumption that 
historical measurements with time lags shorter than the identified causal 
influence delay have a limited impact on the KPI. To further investigate 
the validity of this delay constraint, an ablation study is conducted by 
reintroducing short-lag measurements preceding the detected causal 
delays of auxiliary variables. Specifically, for all the auxiliary variables, 
the candidate lag windows are expanded by progressively adding up to 
five pre-delay extensions, with other feature selection strategies 
unchanged.

Figs. 12 and 13 report the RMSE of the validation and test sets ob
tained by TDCCM and TDPCM, respectively. The observations show that 
incorporating a small number of pre-delay measurements can indeed 
improve the performance in the test set, with the most notable 
improvement occurring when three additional lags are included. How
ever, adding more pre-delay measurements eventually leads to perfor
mance degradation in the test set. Notably, this behavior is not reflected 
in the validation performance. On the validation set, the predictive ac
curacy continues to increase as more pre-delay measurements are 
included. This discrepancy suggests that excessive inclusion of pre-delay 
measurements may lead to overfitting to validation data while providing 
limited generalization benefits on unseen test samples, particularly 
when model selection is guided solely by validation performance.

Table 11 presents a comparison between the original results and 
those predicted by the best-performing models on the validation set 
within the considered pre-delay windows. It is evident that incorpo
rating pre-delay windows leads to a decline in model performance. Since 
validation accuracy increases monotonically with larger pre-delay 
windows, it fails to clearly indicate when pre-delay measurements 
cease to be beneficial. For this reason, a causal influence delay constraint 
is strictly enforced as a conservative design choice to improve general
ization and model stability under the current validation strategy. 

5) Computational cost analysis

In this subsection, the computational cost of different causal infer
ence methods is evaluated. All computations are performed on a laptop 
equipped with an 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30 GHz 
CPU and 16 GB RAM. The causal inference considers seven auxiliary 
variables and one KPI, with a maximum time delay of d = 100. For each 
method, we evaluate the causal strength between every pair of auxiliary 
variables as well as between each auxiliary variable and the KPI, 
resulting in 56 variable pairs over 100 time delays. The empirical wall- 
clock times for the four causal inference methods on this setting are 
summarized in Table 12. TDGC is computationally efficient, requiring 
less than half a second to complete the analysis. TDTE is approximately 
1,000 times slower. TDCCM and TDPCM incur the highest computa
tional costs, with runtimes around 850 s. This aligns with their theo
retical complexity, as both involve repeated state-space reconstruction 

and nearest-neighbor searches. The additional overhead introduced by 
TDPCM on top of TDCCM is minimal, indicating that the majority of the 
computational burden stems from the TDCCM step, while the partial 
correlation calculations in TDPCM contribute only a negligible cost.

In practice, causal inference and feature selection are performed 
offline and only once for a given process and dataset, whereas the 
resulting soft sensor model is used repeatedly in online operation. 
Therefore, although TDCCM and TDPCM are more expensive than TDGC 
and TDTE, the computational cost of the soft sensor model remains 
acceptable in industrial applications.

4.2. Continuous stirred tank reactor

4.2.1. Dataset description
The continuous stirred tank reactor (CSTR) is one of the most widely 

used reactor types in chemical and biochemical industries. The flow
chart of the CSTR is illustrated in Fig. 14, with detailed descriptions of 
monitoring variables provided in Table 13. Specifically, S1 represents 
the liquid level in the reactor, which is vital for ensuring stable volume 
and proper mixing. S2 and S4 denote the coolant flow rate and the 
coolant temperature in the jacket, respectively. Both of them are 
essential for temperature regulation within the reactor. S3 is the reactor 
temperature, a critical variable affecting reaction kinetics. S5 and S7 
indicate the feed flow rate and reactant concentration in the reactor feed 
stream, respectively. Both of them directly influence the input of re
actants and the reaction rate. S8 is the feed temperature, which can 
impact the initial energy state of the reactants entering the reactor. S6 
represents the outlet flow rate, helping to maintain a steady-state 
operation by balancing inflow and outflow. S9, the inlet coolant tem
perature, is necessary for managing the heat exchange dynamics.

In a CSTR, reactants are continuously fed into the reactor while 
products are simultaneously removed, maintaining a constant reaction 
volume. In practical applications, the reactant concentration in the 
reactor is the KPI of interest for guiding process control, denoted as S10. 
To predict the KPI online, the above nine easily measurable auxiliary 
variables are recorded, denoted as S1-S9. Further details on CSTR can be 
found in [47]. Based on the process knowledge, the true causal network 
of the CSTR system is illustrated in Fig. 15 [48].

In this study, a total of 2400 samples are collected from the process. 
The first 1600 samples are used for causal inference and model estab
lishment, and the remaining 800 samples are reserved for model testing. 
Before analysis, all variables are scaled using min–max normalization.

4.2.2. Causal inference
Fig. 16 shows the variation of the FNN with the embedding dimen

sion for all the variables in the CSTR case. An embedding dimension of E 
= 7 is then selected, as it is the first dimension at which all FNN values 
drop below 5 %.

Then, according to Algorithm 1, the causal inference results of 
TDPCM can be obtained. A negative lag search window of 20 is 
employed to identify potential synchrony-induced false causality. 
Fig. 17 presents the causal strength with time delay of each auxiliary 
variable on the KPI as calculated by TDCCM and TDPCM. It indicates 
that S7 has the strongest causal impacts on the KPI, followed by S6 and 
S1. This result can be explained by process knowledge: S7 determines 
the amount of reactant entering the reactor, and thus has the most im
mediate and significant impact on the KPI, as supported by the material 
balance of the CSTR. S1 influences the KPI by affecting the reaction 
volume. S6 is inversely related to the residence time of the reactant in 
the reactor. Theoretically, S5 is expected to have a significant direct 
causal impact on the KPI. However, because its value is tightly con
strained within the process, its influence is not detected. Notably, while 
S2, S3 and S4 exhibit strong causal intensity with respect to the KPI at 
early time delays, the extreme values appear at negative time lags, 
suggesting that these are actually synchrony-induced false causality and 
the KPI has causal influence on them. This is consistent with the true 
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causal network shown in Fig. 15. The above analysis demonstrates that 
the causal inference results of TDPCM show satisfactory consistency 
with the process knowledge.

4.2.3. Soft sensor modeling results and comparisons
With a maximum time delay d of 100, 1500 effective labeled samples 

are available for model development. The sizes of the training set are 
varied from 1000 to 1350 samples in steps of 5, keeping the sum of 
training and validation sets constant at 1500, to evaluate the stability of 
different methods.

Taking a training set sample size of 1250 as an example, Fig. 18
highlights the selected features with the optimized threshold obtained 
by TDCCM and TDPCM. Notably, the causal influence delays of S2, S3 
and S4 are around 25 because the high causal strength at early time 
delays are synchrony-induced false causality. Therefore, features at 
these time delays with high causal strength are not selected. In contrast, 
the causal influence delay for S7 is 1, and its features are selected at early 
time delay.

The performance metrics on the test set with increasing sample size 
of the training set using different feature selection methods are shown in 
Fig. 19. It can be seen that models based on RF and TDPCM exhibit 
greater stability compared to other feature selection methods.

Table 14 presents the performance and uncertainties on the test set 
using different feature selection methods when the sample size of the 
training set exceeds 1250. For model average performance, TDCCM 
achieves the best average performance, followed by TDPCM. Compared 
with the existing best method CMI, TDCCM yields a 7.92 % increase in 
R2, along with 11.33 % and 10.04 % reductions in RMSE and MAE, 
respectively. For model uncertainty, the standard deviation of RF is the 
best, followed by TDPCM. As the method with minimal risk, TDPCM 
achieves a 7.8 % increase in R2 and reductions of 9.46 % in RMSE and 
13.51 % in MAE compared to the second-best method TDCCM in the 
worst scenario. Overall, the feature selection methods based on time- 
delayed cross mapping techniques achieve superior average perfor
mance and stability compared to existing feature selection methods.

Again, we employ the Wilcoxon signed-rank test [46] for significance 
testing, and the median difference is reported to quantify the practical 
magnitude of the performance differences. The analysis focuses on the 
regime where the training sample size exceeds 1250, resulting in 21 
paired samples. The corresponding results for TDCCM and TDPCM are 
summarized in Tables 15 and 16. Across all performance metrics, 
existing feature selection methods differ significantly from TDCCM and 
TDPCM, highlighting the consistent superiority of our proposed 
approach.

Fig. 20 shows the comparison between actual values and predicted 
values of soft sensor models constructed with different feature selection 
methods when the training set sample size is 1250. The results indicate 
that the approaches based on TDCCM and TDPCM achieve superior 
accuracy in overall prediction.

Table 17 presents the detailed features selected by each method 
along with the total number of features when the training set sample size 
is 1250. It can be observed that TDCCM based method has the largest 
number of features, followed by PCC and TDPCM. However, the accu
racy of TDCCM and PCC is much lower than that of TDPCM, indicating 
that the proposed method enhances model accuracy and stability by 
reducing redundant features. Moreover, compared with other feature 
selection methods, although the number of features increases, both 
model accuracy and stability are improved as listed in Table 14, indi
cating that important features with direct causality information are 
involved.

4.2.4. Discussions
1) Discussions on causal inference results
In order to show the superiority of the causal inference method based 

on state-space reconstruction, Fig. 21 depicts the changes in causal 
strength of S7 on the KPI with different time delays, derived from 

different time-series causal inference techniques, as well as their opti
mized thresholds and selected features. Notably, as there are no poten
tial confounding variables in the causal path from S7 to the KPI, TDCCM 
and TDPCM give similar results.

From Fig. 21, both TDGC and TDTE successfully detect the causal 
relationship from S7 to the KPI, but the causal strength declines sharply 
as the time delay increases. This occurs because S7 and the KPI are 
interdependent: the historical information of S7 is already embedded in 
the past measurements of the KPI. As a result, removing S7 at large time 
delays has little impact on predicting the KPI. Therefore, for TDGC and 
TDTE, which rely on the decorrelation assumption, features of S7 with 
large time delays are considered to have no causal effect. In contrast, 
methods based on state-space reconstruction infer causal relationships 
through cross mapping between the manifolds of variables. It can be 
seen that TDCCM and TDPCM identify three distinct stages of S7 on the 
KPI: strong causal relationship, moderate or weak causal relationship, 
and no causal relationship. This allows them to provide more compre
hensive information for feature selection compared to TDTE and TDGC.

2) Ablation study on the synchrony-induced false causality identification
False causality caused by synchrony is a consequence of using state 

space reconstruction in causal inference [30]. In the proposed causal 
feature selection framework, TDCCM and TDPCM are designed to 
explicitly exclude such effects by selecting causal delays only when 
causal strength is locally maximal. To determine whether this filtering 
process is necessary, we conduct an ablation experiment where 
synchrony-induced false causality is intentionally retained. In the CSTR 
case, variables S2, S3 and S4 are influenced by S10, and the false cau
sality is detected at early time delays. In the ablation variant, these 
variables are manually assigned causal delays of one, effectively 
bypassing the false-causality screening. A soft sensor model is then 
constructed using the resulting feature set, and its predictive perfor
mance is compared with that of the original approach.

The evaluation results, summarized in Table 18, show that the in
clusion of synchrony-induced false causal features leads to a substantial 
degradation in model accuracy and stability, with notable increases in 
RMSE and MAE and a marked reduction in R2. This decline confirms that 
synchrony-induced false causality does not convey meaningful predic
tive information and introduce redundant features into the model. 
Therefore, identifying and removing synchrony-induced false causality 
is essential for ensuring the effectiveness of causal feature selection re
sults based on time-delayed cross mapping.

5. Numerical studies

This section aims to assess the ability of TDCCM and TDPCM in 
inferring causal relationships between interdependent variables 
considering time delay, which plays a crucial role in effective causal 
feature selection.

5.1. A chain-structured system

First, we consider a chain-structured system to verify whether 
TDPCM can effectively eliminate indirect causal relationships. Inspired 
by [32], we establish a four-variable chain-structured system as: 

y1(t) = y1(t − 1)⋅[α1 − α1⋅y1(t − 1) ]
y2(t) = y2(t − 1)⋅[α2 − α2⋅y2(t − 1) − λ12⋅y1(t − 1) ]
y3(t) = y3(t − 1)⋅[α3 − α3⋅y2(t − 1) − λ23⋅y2(t − 5) ]
y4(t) = y4(t − 1)⋅

[
α4 − α4⋅y4(t − 1) − λ34⋅y3(t − 2)

]
26 

where all values of α are set to 3.6; and all values of λ are set to 0.5. To 
account for the influence of measurement error, Gaussian noise is 
introduced into each observation, following a normal distribution with 
zero mean and a standard deviation of 0.01. Its true causal diagram is 
illustrated in Fig. 22, where the numbers on the links denote the time 
delays of causal effects.
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Then, a total of 2000 samples are generated for causal inference. 
Fig. 23 illustrates the TDCCM and TDPCM results of the chain-structured 
system. TDCCM infers that Y1, Y2, and Y3 all exert strong causal in
fluences on Y4. In contrast, TDPCM effectively reduces the causal 
strengths of Y1 and Y2 while preserving that of Y3, demonstrating the 
capability of TDPCM in identifying direct causality. Additionally, both 
TDCCM and TDPCM accurately identify the causal delay from Y3 to Y4.

We then examine how measurement noise affects the results of 
causal inference. Specifically, the standard deviation of noise is varied to 
0.02, 0.05 and 0.1, while all other parameters remain unchanged. The 
causal inference results are illustrated in Fig. 24. As noise increases, the 
inferred causal strength from both methods gradually weakens. At a 
noise level of 0.02, TDCCM suggests that Y1 has a stronger causal in
fluence than Y3, whereas TDPCM correctly identifies Y3 as having the 
strongest effect. When the standard deviation increases to 0.05, TDCCM 
detects an incorrect causal delay, while TDPCM continues to identify the 
delay accurately. At the highest noise level of 0.1, both methods fail due 
to excessive noise interference. These results indicate that TDPCM is 
more robust to noise and more effective at identifying both direct cau
sality and causal delays compared to TDCCM.

5.2. A fork-structured system

A fork-structured system can be used to verify whether TDPCM 
mistakenly eliminates direct causal relationships. Similarly, we establish 
a three-variable fork-structured system as: 

y1(t) = y1(t − 1)⋅[α1 − α1⋅y1(t − 1) ]
y2(t) = y2(t − 1)⋅[α2 − α2⋅y2(t − 1) ]

y3(t) = y3(t − 1)⋅[α3 − α3⋅y2(t − 1) − λ13⋅y1(t − 1) − λ23⋅y2(t − 3) ]
27 

where α1 = α2 = 4, α3 = 2.2, λ13 = 0.6, λ23 = 0.7. To account for the 
influence of measurement error, Gaussian noise is again introduced into 
each observation, following a normal distribution with zero mean and a 
standard deviation of 0.001. Its true causal diagram is illustrated in 
Fig. 25, where the numbers on the links denote the time delays of causal 
effects.

Then, a total of 2000 samples are generated for causal inference. 
Fig. 26 illustrates the TDCCM and TDPCM results of the fork-structured 
system. Both TDCCM and TDPCM accurately identify the causal influ
ence and delay from Y1 and Y2 to Y3, indicating that TDPCM does not 
mistakenly eliminate direct causal relationships.

6. Conclusion

The characteristics of time delays and inherently interdependent 
variables in industrial processes are always ignored by existing causal 
feature selection methods, resulting in inadequate model accuracy and 
stability. To overcome these limitations, this paper proposes a causal 
feature selection framework based on time-delayed cross mapping. 
TDCCM is introduced for total causal inference, and TDPCM is devel
oped for direct causal inference. The variation of causal strengths with 
time delays is considered, and the decorrelation assumption is avoided. 
Besides, an objective feature selection strategy based on causal inference 
results is presented. The findings on the industrial cases and numerical 
studies demonstrate that: 

• Compared to causal feature selection method that ignores the influ
ence of varying time delays, TDCCM achieves average RMSE re
ductions of 34.3 % and 11.3 % in two respective cases. When 
compared to causal feature selection methods that overlook the 
interdependence between variables, TDCCM reduces average RMSE 
by 22.3 % and 38.9 %, respectively.

• Compared with TDCCM, TDPCM shows a slight decrease in average 
performance but exhibits substantially improved stability. As the 
method with the lowest risk, TDPCM reduces RMSE by 5.93 % and 

9.46 % in two respective cases compared with TDCCM in the worst 
scenario, with the average RMSE increasing by only 4.84 % and 2.87 
% in the two cases, respectively.

• For both the chain-structured and fork-structured systems in the 
numerical studies, TDPCM accurately identifies the direct causal 
relationships with their causal delays.

Moreover, the proposed method faces several limitations that war
rant further research. Firstly, TDPCM relies on the partial Pearson cor
relation coefficient, which limits its ability to capture nonlinear 
dependencies. Although some studies have proposed enhancements to 
CCM to address this shortcoming [49], effectively incorporating 
nonlinear relationships into the identification of direct causal links re
mains an open challenge. Secondly, the two case studies considered in 
this work are systems with relatively smooth and stationary dynamics. 
In such settings, the causal inference analysis is conducted offline and 
remains fixed during prediction. However, for processes with regime 
shifts, multimodality or strong non-stationarity, the causal structure and 
associated time delays may change over time. A systematic investigation 
into online extensions therefore represents a promising direction for 
future research. Finally, this study proposes a feature selection method 
specifically designed for deterministic regression models. An important 
future direction involves integrating time-delayed cross mapping tech
niques with models characterized by inherent uncertainty, such as deep 
neural networks. This integration may improve key feature identifica
tion and ultimately enhance model performance.
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Appendix A 

To ensure reproducibility of the experimental results reported in this 
study, this appendix summarizes the implementation details and hyper- 
parameter configurations of all feature selection methods considered. 
Table 19 lists the calculation methods as well as the specific parameter 
settings for all the feature selection methods used in the two industrial 
cases.

Appendix B 

This appendix summarizes the deep learning architectures and 
hyper-parameter configurations used in the LSTM, GRU and Trans
former models. Hyper-parameters are optimized via Bayesian optimi
zation using Optuna [50]. The complete configuration after 
optimization is provided in Table 20. All models are trained using mean 
squared error loss and the Adam optimizer. Data are standardized before 
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model training using min–max normalization. The models are trained 
ten times on every training set to get a robust result.

Data availability

The code is publicly available at https://github.com/dirge1/ 
TDPCM.
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