
Reliability modeling and statistical analysis of accelerated
degradation process with memory effects and
unit-to-unit variability

Shi-Shun Chen a, Xiao-Yang Li a,*, Wen-Rui Xie b

a School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
b School of Mathematics, Jilin University, Changchun 130012, China

A R T I C L E I N F O

Dataset link: https://github.com/dirge1/FBM_
ADT

Keywords:
Accelerated degradation testing
Fractional Brownian motion
Unit-to-unit variability
EM algorithm
Memory effect
Tuner reliability analysis

A B S T R A C T

A reasonable description of the degradation process is essential for credible reliability assessment
in accelerated degradation testing. Existing methods usually use Markovian stochastic processes
to describe the degradation process. However, degradation processes of some products are non-
Markovian due to the interaction with environments. Misinterpretation of the degradation
pattern may lead to biased reliability evaluations. Besides, owing to the differences in materials
and manufacturing processes, products from the same population exhibit diverse degradation
paths, further increasing the difficulty of accurate reliability estimation. To address the above
issues, this paper proposes an accelerated degradation model incorporating memory effects and
unit-to-unit variability. The memory effect in the degradation process is captured by the frac-
tional Brownian motion, which reflects the non-Markovian characteristic of degradation. The
unit-to-unit variability is considered in the acceleration model to describe diverse degradation
paths. Then, lifetime and reliability under normal operating conditions are presented. Further-
more, to give an accurate estimation of the memory effect, a new statistical analysis method based
on the expectation maximization algorithm is devised. The effectiveness of the proposed method
is verified by a simulation case and a real-world tuner reliability analysis case. The simulation
case shows that the estimation of the memory effect obtained by the proposed statistical analysis
method is much more accurate than the traditional one. Moreover, ignoring unit-to-unit vari-
ability can lead to a highly biased estimation of the memory effect and reliability. From the tuner
reliability analysis case, the proposed model is superior in both deterministic degradation trend
predictions and degradation boundary quantification compared to existing models, which can
provide more credible reliability assessment.

1. Introduction

With the continuous progress of design and manufacturing technology, modern products tend to have extremely high reliability
and long lifetime. At this point, accelerated degradation testing (ADT) is always employed, in which degradation data are obtained
under more severe stress conditions. By modeling ADT data, the lifetime and reliability of products under normal conditions can be
extrapolated and the saving of cost and time can be achieved. In ADT modeling, a reasonable description of the degradation process is
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vital to support credible lifetime and reliability assessments [1]. Most existing ADT models hold a general assumption that perfor-
mance degradation is a memoryless Markovian process with independent increments [2–4]. However, for real engineering products,
such as batteries or blast furnace walls [5], degradation typically exhibits non-Markovian properties due to their interaction with
environments [6], i.e., the future degradation increment is influenced by the current or historical states. Since traditional Markovian
models are inherently memoryless, they fail to describe the degradation of such dynamic systems, leading to an imprecise lifetime and
reliability assessments [7]. Hence, building up an ADT model considering the non-Markovian degradation is essential for enabling
accurate extrapolation of lifetime and reliability.

To describe the non-Markovian property of a degradation process, some research introduced a state-dependent function to quantify
the influence of the current state on the degradation rate and established different transformed stochastic processes. For instance,
Giorgio et al. [8] established the transformed gamma process and derived the conditional distribution of the first passage time.
Following this, Giorgio and Pulcini [9] further proposed the transformed Wiener process to describe the non-Markovian degradation
process with possibly negative increments. Also, the transformed inverse Gaussian process [10] and the transformed exponential
dispersion process [11] were presented and the corresponding parameter estimation methods based on the Bayesian framework were
developed. However, for the above transformed stochastic processes, selecting a sensible form of the state-dependent function is
challenging in the absence of prior knowledge. Besides, these models only focus on the influence of the current state on the future
degradation increment, which may not be sufficient for describing the memory effects of the entire degradation path.

Different from the state-dependent function, fractional Brownian motion (FBM) serves as a proficient mathematical tool for
modeling non-Markovian stochastic processes incorporating memory effects [12,13]. In an FBM, memory effects can be simply
quantified by the Hurst exponent. To this end, FBM has drawn much attention in degradation modeling and had widespread appli-
cations in remaining useful life (RUL) prediction [14]. Xi et al. [15] first introduced the FBM to capture the memory effects in the
degradation process and predicted the RUL of a turbofan engine. Afterward, Xi et al. [16] proposed an improved degradation model by
considering both the memory effect and unit-to-unit variability (UtUV). Shao and Si [17] extended the degradation model based on the
FBM by considering measurement errors. Xi et al. [18] further developed a multivariate degradation model based on the FBM to
describe multivariate stochastic degradation systems with memory effects. The above studies found that compared to the Wiener
process-based Markovian degradation models, the FBM-based non-Markovian ones can help for obtaining more accurate RUL pre-
dictions when facing degradation with memory effects.

Despite substantial progress in degradation modeling achieved by introducing FBM, their studies ignore the effect of external
stresses which are key factors influencing performance degradation. As a result, their modeling is limited to degradation under
constant stress levels. In an ADT, degradation data are collected from different stress levels. In order to extrapolate reliability under the
normal stress level, the effect of external stresses on performance degradation needs to be quantified accurately. For this purpose, Si
et al. [7] developed an ADT model based on the FBM, which incorporated external stresses into degradation modeling. However, there
still exists research gaps. In general, the reliability evaluation accuracy of the ADTmodel depends not only on the precise description of
the degradation process, but also on proper uncertainty quantification. In an ADT, we can observe that different items exhibit diverse
degradation paths, denoted as UtUV. UtUV stems from variations in materials and manufacturing among different products in the
population. Unfortunately, the existing FBM-based ADT model ignores UtUV. Therefore, their model can only represent the degra-
dation paths of the observed samples, rather than the overall degradation pattern of the population. The author [19] and other scholars
[20,21] have also shown that ignoring UtUV in ADT modeling results in unreliable reliability assessments in practical applications.

Apart from ADT modeling, performing statistical analysis on the ADT data to estimate unknown parameters is also a crucial step.
When estimating the unknown parameters in ADT models with UtUV, it is always challenging to get a solution by direct constrained
optimization of the overall likelihood function since the source of effect on degradation is diverse (i.e., external stresses, time and
uncertain degradation rate). In the literature, a two-step maximum likelihood estimation (MLE) method was generally used to estimate
unknown parameters in theWiener-process based ADTmodels with UtUV [22,23]. However, the two-step MLEmethod maximizes two
partial likelihood functions separately and fails to guarantee the maximization of the overall likelihood function. This exists a risk of
deviating from the real law of actual degradation data when dealing with ADTmodels with UtUV, especially when the memory effect is
incorporated. As demonstrated in the following Section 4.3.1, the estimation of the memory effect obtained by the two-step MLE
method is highly biased, which leads to misjudgment of the degradation law and significant deviations in reliability evaluations.

Motivated by the above limitations, a comprehensive degradation model considering memory effects, UtUV and external stresses
simultaneously is presented. In addition, a new statistical analysis method is proposed based on the expectation maximization (EM)
algorithm [24], where the maximization of the overall likelihood function can be implemented. Compared to existing studies, although
Xi et al. [16] has proposed a FBM-based degradation model incorporating UtUV, their model ignored the effect of external stresses on
degradation. Therefore, extrapolation of the product reliability under other stress levels cannot be achieved. For the ADT model
proposed in [7], UtUV was ignored in their model, which could result in biased reliability evaluations in practical applications.
Moreover, when external stresses and UtUV are both considered in the FBM-based degradation model, the statistical analysis method
used in [16] and [7] has difficulty in obtaining a solution, requiring exploration of new statistical analysis methods.

The main contributions of this paper are summarized as follows:

1) An improved FBM-based degradation model is proposed for reliability estimation of ADT data with memory effects, in which the
influence of external stresses are incorporated and the UtUV is quantified.

2) A statistical analysis method is presented based on the EM algorithm, in which the accurate estimation of the memory effect is
achieved by maximizing the overall likelihood function rather than maximizing two partial likelihood functions separately.
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3) The superiority of the proposed ADTmodel and statistical analysis method is verified by comparing existingmethods in a numerical
case and a real-world tuner reliability analysis case.

The organization of the paper is as follows. Firstly, Section 2 gives the preliminary about the FBM. Then, in Section 3, an ADTmodel
with memory effects and UtUV is proposed, and a statistical analysis method based on the EM algorithm is presented. After that, in 4
Simulation study, 5 Engineering application, the practicability and the superiority of the proposed methodology are verified by a
simulation case and an engineering case, respectively. Finally, we conclude our work in Section 6.

2. Preliminary to fractional Brownian motion

Let a standard FBM denoted by BH(t), for a given time t≥ 0, BH(t) can be defined as [25]:

BH(t) =
1

Γ
(

H+ 1
2

)

∫ t

− ∞
WH(t − r)dB(r), (1)

where

WH(t − r) =
{
(t − r)H− 1/2, 0 ≤ r ≤ t
(t − r)H− 1/2 − ( − r)H− 1/2, r < 0;

(2)

Γ(⋅) is the gamma function formulated by

Γ(x) =
∫ ∞

0
tx− 1e− tdt; (3)

B(⋅) represents the standard Brownian motion; and H is the Hurst exponent with the range of (0, 1). For the standard FBM shown in Eq.
(1), the autocorrelation function can be expressed by

E[BH(t)BH(r)] =
1
2

(
t2H + r2H− |t − r|2H

)
. (4)

It can be seen from Eq. (4) that the memory effect is determined by H. Depending on the value of H, there are three different cases
[16]:

1) When 0< H< 0.5, the increments of FBM are negatively correlated, which implies that future increments tend to an opposite
tendency of the previous direction and the increment process has short-term memory effect.

2) When H= 0.5, the FBM degenerates into the BM, and there is no memory effect in the increment process.
3) When 0.5<H< 1, the increments of FBM are positively correlated, which implies that future increments tend to follow the previous

direction and the increment process has long-term memory effect.

We can see that the standard BM is a special case of the standard FBM. In addition, for t≥ 0, the standard FBM exhibits the following
properties:

1) BH(0) = 0;
2) E[BH(t)] = 0 and E

[
B2H(t)

]
= t2H;

3) BH(t) − BH(r) ~ BH(t − r) for any r<t;
4) BH(at) ∼ aHBH(t) for a>0.

3. Methodology

3.1. Model construction

In order to describe the non-Markovian degradation process with memory effects, a standard FBM shown in Eq. (1) is introduced to
construct the ADT model as follows:

X(s, t) = f(s, t) + σBH(t), (5)

where X(⋅) denotes the performance degradation amount; f (⋅) is a function of stress s and time t, which depicts the deterministic
performance degradation trend; σ represents the diffusion coefficient.

Generally speaking, f(⋅) in Eq. (5) can be decoupled as a performance degradation rate function e(s) multiplied by a time scale
function τ(t) [19], i.e.:

X(s, t) = e(s) ⋅ τ(t) + σBH(t), (6)

S.-S. Chen et al. Applied Mathematical Modelling 138 (2025) 115788 

3 



where τ(t)= tβ, β>0 is a common assumption for the timescale function [23]. If β= 1, then it represents a linear degradation process,
otherwise a nonlinear degradation process; e(s) indicates the relationship between degradation rate and external stress (also known as
the acceleration model) [26].

In general, e(s) is usually assumed as a log-linear function as follows [27]:

e(s) = exp(α0+ α1s∗), (7)

where α0 and α1 are constant unknown parameters; s* is the standardized stress. For different type of acceleration models, s* can be
calculated as [28]:

s∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/s0 − 1/s
1/s0 − 1/sH

, Arrhenius model,

lns − lns0
lnsH − lns0

, Power law model,

s − s0
sH − s0

, Exponential model,

(8)

where s0 denotes the normal stress level; sH denotes the highest stress levels. The choice of acceleration models mainly depends on the
type of accelerated stress. For instance, the Arrhenius model is adopted if the accelerated stress is temperature; if the accelerated stress
is humidity, the Power law model is employed [29].

As mentioned in the introduction, UtUV plays a significant role in ADT modeling. To be specific, for items under the same stress
level, each item may have its own performance degradation rate due to manufacturing imperfections. As a result, it is reasonable to
deduce that each item has unique e(s). Without loss of generality, we make the assumption that the degradation rates of various items
adhere to a normal probability distribution. Thus, Eq. (6) can be transformed as:

X(s, t) = e(s) ⋅ τ(t) + σBH(t), e(s) ∼ N
(
μe(s), σ2e (s)

)
. (9)

Given that e(s) is a random variable, the degradation rate function in Eq. (7) can be reformulated, as indicated by

e(s) = exp(α0+ α1s∗) = aexp(α1s∗), a ∼ N
(
μa, σ2a

)
, (10)

where a = exp(α0) is a random variable with a normal probability distribution, μa > 0. Then, the distribution of e(s) in Eq. (9) can be
derived as:

μe(s) = μaexp(α1s∗), σe(s) = σaexp(α1s∗). (11)

3.2. Lifetime distribution and reliability analysis

The main purpose of ADT is to extrapolate the lifetime and reliability of the product at normal stress s0 by using the degradation
data subjected to high stress levels. In accordance with the definition of reliability within belief reliability theory [30], a product is
considered to fail when its performance margin≤ 0. Since X denotes the performance degradation amount, the performance marginM
can be defined as:

M(s, t) = Xth − X(s, t), (12)

where Xth denotes the critical threshold of the degradation process. Then, the failure time T of a product can be expressed as:

T(s) = inf{t|M(s, t)<0}, (13)

and the reliability of a product R can be expressed as:

Algorithm 1
The MC method to calculate the product lifetime distribution and reliability under specified operating conditions.

Step 1. Determine the model parameters θ̂ = [μ̂a, σ̂a, α̂1, β̂, σ̂, Ĥ]
T based on the EM algorithm in the subsequent Section 3.3;

Step 2. According to θ̂, simulate N degradation trajectories under specified stress sp. The qth degradation trajectory can be obtained as:
2.1 Simulate the qth standard FBM Bq

H=Ĥ(t) using the FFT algorithm [31] (Detailed steps of the FFT algorithm can be found in [7]);

2.2 Generate a unit-specific aq according to its distribution N
(

μ̂a, σ̂2a
)
;

2.3 Acquire the degradation trajectory as Xq(s, t) = aqexp
(

α̂1s∗p
)

⋅ tβ̂ + σ̂Bq
H=Ĥ(t).

Step 3. Calculate the product lifetime distribution and reliability under specified stress sp:
3.1 Calculate the failure time of the N simulated degradation trajectories under stress sp by applying Eq. (13), denoted as Tq(1 ≤ q ≤ N);

3.2 Derive the empirical lifetime distribution under stress sp as F
(
t|θ̂, sp

)
=
1
N
∑N

q=1
1t
(
Tq
)
;1t
(
Tq
)
= {

1, if Tq ≤ t
0, otherwise ;

3.3 Calculate the product reliability at the specific time t using Eq. (14).
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R(s, t) = Pr{T(s) ≥ t}, (14)

where Pr{⋅} denotes the probability measure.
For the FBM-based degradation model with UtUV, Xi et al. [16] have developed an approximate analytical lifetime distribution by

utilizing weighted random sums. However, the approximate lifetime distribution is only suitable for the degradation process with
long-term memory effect, i.e., H > 0.5. When the degradation process exhibits short-term dependency, the approximate lifetime
distribution may lead to biased reliability evaluations. Therefore, we employ the Monte Carlo (MC) method to calculate the lifetime
distribution and reliability under specified operating conditions. This approach is not restricted by the type of memory effect. Algo-
rithm 1 gives the detailed procedures of the MC method.

3.3. Statistical analysis

In this paper, we consider a constant stress ADT, which is generally used in practice. The observed ADT data xlij is denoted as the jth

degradation value of unit i subjected to the lth stress level, l= 1, 2, ……, k, i= 1, 2, ……, nl, j= 1, 2, ……,mli, where k is the number of
stress levels, nl is the number of test items under the lth stress level, and mli denotes the number of measurements for unit i subjected to
the lth stress level. The corresponding measurement time is represented by tlij. Hereby, the degradation observations of the ith item
tested at lth stress level can be denoted as xli =

[
xli1, xli2,⋯, xlimli

]T. Furthermore, we define τli =
[
τ(tli1), τ(tli2),⋯, τ

(
tlimli

)]T and Bli
H =

[
BH(tli1),BH(tli2),⋯,BH

(
tlimli

)]T.
According to Eqs. (9) and (10), the unknown parameters need to be determined are θ = [μa, σa,α1, β, σ,H]T. In this section, a

statistical analysis approach based on the EM algorithm is presented.
Since each item has a unique degradation rate, for the ith item tested at lth stress level, we have

xli = aliψli + σBli
H, (15)

where

ψli = exp
(
α1s∗l

)
τli. (16)

The basic idea of the EM algorithm involves replacing unobservable variables with their conditional expectations, where parameter
updates at each step can be derived in a closed or simple form [32]. The EM algorithm mainly comprises two steps. Firstly, the
expectation of the log-likelihood is calculated with respect to the latent variables, which is called the expectation-step (E-step). Then,
the maximizer of this expected likelihood is identified, which is called the maximization step (M-step). These two steps are iteratively
repeated until reaching a satisfactory level of convergence.

In Eq. (15), ali is the unobservable variable and needs to be replaced. We denote =
{
a11,⋯,a1n1 ,a21,⋯,alnl

}
. Subsequently,

whenprovided with the complete data including x and Ω, we can formulate the complete log-likelihood function as:

lnL(θ|x,Ω) =
∑k

l=1

∑nl

i=1
[lnp(xli|ali, θ) + lnp(ali|θ)] , (17)

where p(xli|ali,θ) denotes the probability density function (PDF) of xli given ali and θ; and p(ali|θ) denotes the PDF of ali given θ. Ac-
cording to the ADT models Eqs. (9) and (11), Eq. (17) can be extended as:

lnL(θ|x,Ω) = −
1
2
∑k

l=1

∑nl

i=1

[
mliln(2π) + ln|Qli| + (xli − aliψli)

TQ− 1
li (xli − aliψli)

]

−
1
2
∑k

l=1

∑nl

i=1

[

ln(2π) + lnσ2a +
(ali − μa)

2

σ2a

]

,

(18)

where Qli is a mli × mli dimensional covariance matrix and its (u, v)th entry can be calculated by

(Qli)uv =
σ2
2

(
t2Hliu + t2Hliv − |tliu − tliv|2H

)
. (19)

To facilitate the following statistical analysis, a re-parameterization of the unknown parameter is performed by Σli =
Qli
σ2 . Then, Eq.

(18) can be rewritten as:

lnL(θ|x,Ω) = −
1
2
∑k

l=1

∑nl

i=1

[
(mli + 1)ln(2π) + ln

⃒
⃒Σij
⃒
⃒+mlilnσ2

+
(xli − aliψli)

TΣ− 1
li (xli − aliψli)

σ2 + lnσ2a +
(ali − μa)

2

σ2a

]

.

(20)
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Considering the update of θ during the iterations in the EM algorithm, let θ(p) =
[
μ(p)
a , σ2(p)a ,α(p)

1 , β(p), σ2(p),H(p)
]T
represent the esti-

mations in the pth step. To calculate the expectation of the log-likelihood function Eq. (20), it is necessary to derive the first and second
moments of ali conditional on xli and θ(p). Notably, it is evident that the distribution of ali conditional on xli and θ(p) maintains a normal
distribution [33]. Within the Bayesian framework, the posterior distribution of ali can be acquired as:

p(ali|xli, θ(p))∝p(xli|ali, θ(p))p(ali|θ(p))∝exp

[

−
1
2

(
xli − aliψ(p)

li

)T[
Σ(p)
li

]− 1(
xli − aliψ(p)

li

)

σ2(p)

]

exp

[

−

(
ali − μ(p)

a
)2

2σ2(p)a

]

∝exp

{

−
1
2

[([
ψ(p)

li

]T[
Σ(p)
li

]− 1
ψ(p)

li

σ2(p) +
1

σ2(p)a

)

a2li − 2

(
xT
li
[
Σ(p)
li

]− 1
ψ(p)

li

σ2(p) +
μ(p)
a

σ2(p)a

)

ali

]}

∝exp

{

−

[
ali −

(
xT
li
[
Σ(p)
li

]− 1
ψ(p)

li σ2(p)a + μ(p)
a σ2(p)

)/([
ψ(p)

li

]T[
Σ(p)
li

]− 1
ψ(p)

li σ2(p)a + σ2(p)
)]2

2σ2(p)σ2(p)a

/([
ψ(p)

li

]T[
Σ(p)
li

]− 1
ψ(p)

li σ2(p)a + σ2(p)
)

}

∼ N
(
μ(p)
li , σ

2(p)
li

)

(21)

with

μ(p)
li =

xT
li
[
Σ(p)
li

]− 1
ψ(p)

li σ2(p)a + μ(p)
a σ2(p)

[
ψ(p)

li

]T[
Σ(p)
li

]− 1
ψ(p)

li σ2(p)a + σ2(p)
, (22)

σ2(p)li =
σ2(p)σ2(p)a

[
ψ(p)

li

]T[
Σ(p)
li

]− 1
ψ(p)

li σ2(p)a + σ2(p)
. (23)

Subsequently, we employ the EM algorithm to estimate θ iteratively. Firstly, the expectation of lnL(θ|x, Ω) with regard to Ω is
computed in the E-step. According to Eqs. (20), (22) and (23), we can get

Q(θ|x,θ(p)) = EΩ|θ(p) [lnL(θ|x,Ω)]

= −
1
2
∑k

l=1

∑nl

i=1

{
(mli + 1)ln(2π) + ln|Σli| +mlilnσ2

+
xT
liΣ

− 1
li xli − 2μ(p)

li xT
liΣ

− 1
li ψli +

([
μ(p)
li

]2
+ σ2(p)li

)
ψT

liΣ
− 1
li ψli

σ2

+

[
μ(p)
li

]2
+ σ2(p)li − 2μ(p)

li μa + μ2a
σ2a

+ lnσ2a

}

.

(24)

In the M-step, the first partial derivatives of Q(θ|x, θ(p)) with respect to μa, σ2a and σ2 can be derived, respectively. Then, by equating
each derivative to zero, we can obtain

μ(p+1)
a =

1
∑k

l=1
nl

∑k

l=1

∑nl

i=1
μ(p)
li , (25)

σ2(p+1)a =

∑k

l=1

∑nl

i=1

([
μ(p)
li

]2
+ σ2(p)li − 2μ(p)

li μ(p+1)
a +

[
μ(p+1)
a

]2
)

∑k

l=1
nl

, (26)

σ2(p+1) =

∑k
l=1
∑nl

i=1

(
xT
liΣ

− 1
li xli − 2μ(p)

li xT
liΣ

− 1
li ψli +

([
μ(p)
li

]2
+ σ2(p)li

)
ψT

liΣ
− 1
li ψli

)

∑k
l=1
∑nl

i=1mli
. (27)

Note that μ(p+1)
a and σ2(p+1)a can be directly determined based on Eqs. (22) and (23), while σ2(p+1) depends on the values of α(p+1)

1 ,
β(p+1) and H(p+1). Upon substitution of μ(p+1)

a , σ2(p+1)a and σ2(p+1) into Eq. (24), we get the profile likelihood function as:

Q
(
α1, β,H

⃒
⃒x, μ(p+1)

a , σ2(p+1)a
)
= −

1
2
∑k

l=1

∑nl

i=1

{
(mli +1)[ln(2π) + 1] + ln|Σli| + lnσ2(p+1)a +mlilnσ2(p+1)

}
. (28)

Then, by maximizing the profile likelihood function, the values of α(p+1)
1 , β(p+1) and H(p+1) can be obtained. Subsequently, the value
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of σ2(p+1) can be determined by substituting α(p+1)
1 , β(p+1) andH(p+1) into Eq. (27). The iterations are typically stopped when the relative

change in parameter estimations drops below a predefined threshold. The complete algorithm is outlined in Algorithm 2.
In addition to the point estimation of θ derived from Algorithm 2, it is equally important to consider the interval estimation of θ.

Interval estimation provides a range of plausible values within which the true parameter is likely to lie, offering a complete under-
standing of the estimation uncertainty. While the asymptotic normality of maximum likelihood function is commonly used for interval
estimation, deriving the expected Fisher information matrix of the proposed model is challenging due to the existence of memory
effects, stress acceleration, and UtUV. Thus, non-parametric bootstrap method is employed to acquire the interval estimation [34].
Since the degradation processes of different items are independent, a resampling procedure with replacement is carried out on the
degradation processes of items under each stress condition. Then, θ̂ of the resampled data is obtained based on the EM algorithm. After
repeating this procedureM times, we getM bootstrap estimates for different resampled data, denoted as

{
θ̂
∗

1,..., θ̂
∗

M
}
. Then, the interval

estimation at a given confidence level (CL) for each parameter can be derived by calculating the percentiles from
{

θ̂
∗

1,..., θ̂
∗

M
}
. Besides,

the interval estimation of reliability can be derived from
{

θ̂
∗

1, ..., θ̂
∗

M
}
. The complete procedure for interval estimation is outlined in

Algorithm 3.

4. Simulation study

In this section, the proposed method is illustrated through a numerical simulation case. Furthermore, the superiority of the pro-
posed parameter estimation method and the significance of the proposed ADT model are demonstrated.

4.1. Simulation settings

Detailed information on the constant-stress ADT simulation case is shown in Table 1. The degradation process exhibits short-term
dependency because H =0.1. Specifically, the sample sizes for each stress level (N) are set as 6 and the measurements for each sample
(M) are set as 10.

4.2. Results and analysis

In this case, the initial value of θ is taken from the estimations of the two-step MLE method. The implementation details of the two-
stepMLEmethod are given in the Appendix. The terminated threshold ε for the EM algorithm iteration is set as 0.01, and the number of
bootstrap estimatesM is set as 1000. Then, according to Algorithm 2 and Algorithm 3, we obtain the point and interval estimations of
unknown parameters at 90 % CL as shown in Table 2. It can be seen that the point estimations are basically close to the true values and
the true values lie within the region of interval, which shows the effectiveness of the proposed statistical analysis method.

Furthermore, to show the effectiveness of the ADT model, the predicted deterministic degradation trends based on the point es-
timations, along with the upper and lower boundaries at 90 % CL derived from 10,000 simulated degradation paths are compared with
the observed data. As depicted in Fig. 1, the predicted deterministic degradation trends primarily lie in the observed data across all
accelerated stress levels, and the boundaries nicely envelope the observations. This indicates that the proposed ADT model is capable
of describing the degradation law under different stress levels.

Next, when the critical threshold Xth is 5, we can calculate the point and interval estimation of reliability under the normal use
condition (40 ◦C) according to Algorithm 1 and Algorithm 3, as shown in Fig. 2. From Fig. 2, the reliability of the product for a given
operating time can be obtained. For example, when the product is operated for 4200 h, the lower boundary of reliability at 90 % CL is
0.99. This result can provide guidance for the development of maintenance and warranty strategies.

Remark 1. It is worth mentioning that the sources of uncertainty for the degradation and reliability confidence intervals in Figs. 1
and 2 are different. For the degradation prediction in Fig. 1, the uncertainty is originated from FBM and UtUV in the ADTmodel, which
describes the inherent uncertainty of the degradation process for a batch of products. This type of uncertainty is objective and cannot
be eliminated. On the other hand, the uncertainty of reliability estimation in Fig. 2 is originated from the uncertainty in parameter
estimations. This type of uncertainty is mainly caused by insufficient sample size. In general, increasing sample size will narrow the

Algorithm 2
Parameter Estimations Using the EM Algorithm.

Step 1. Initialize θ(0) =
[
μ(0)
a , σ(0)

a , α(0)
1 , β(0), σ(0),H(0)]T and ε. Set p = 0.

Step 2. Get θ(p+1) by using the EM algorithm
E-step:
2.1 Calculate μ(p)

li and σ2(p)li by using Eqs. (22) and (23);
M-step:
2.2 Update μ(p+1)

a and σ2(p+1)a by using Eqs. (25) and (26);
2.3 Update α(p+1)

1 , β(p+1) and H(p+1) by maximizing the profile likelihood function Eq. (28) through a three-dimensional search;

2.4 Update σ2(p+1) by substituting α(p+1)
1 , β(p+1) and H(p+1) into Eq. (27).

Step 3. If |θ(p+1) − θ(p)| ≤ ε, obtain θ̂ =
[
μ(p+1)
a , σ2(p+1)a , α(p+1)

1 , β(p+1), σ2(p+1) ,H(p+1)
]T
. Otherwise, go to Step 2.
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range of confidence intervals. In Fig. 1, the goal of quantifying the inherent uncertainty for a batch of products is to compare it with the
dispersion of the real data, thereby validating the effectiveness of the ADT model in uncertainty quantification. Whereas in Fig. 2,
quantifying the uncertainty of the parameter estimates is chosen in order to prevent the risk of decision making due to estimation bias.

4.3. Discussions

4.3.1. Comparison of statistical analysis methods
In order to illustrate the superiority of the proposed statistical analysis method compared to the existing two-step MLE method, in

this subsection, nine combinations of (N,M) are chosen to generate simulated ADT data. Other simulation settings are the same as those
in Table 1. Considering the randomness of data generation, we simulated ADT data 1000 times for each combination and obtain the
mean values of parameter estimations. Then, the relative error (RE) between the estimations and the true values is adopted as a metric
to compare the performance of both methods. The RE of the parameter estimation is given by

RE =
∑

⃒
⃒
⃒
⃒
θ̂ − θ

θ

⃒
⃒
⃒
⃒. (29)

Table 3 gives the mean values of unknown parameter estimations obtained by two methods under nine combinations of sample
sizes and measurements, and Fig. 3 illustrates the RE for two methods under different combinations. From Table 3 and Fig. 3, we can
get the following results:

• For the two-step MLE method, when the number of measurements is limited, the estimation bias of H is significantly high, reaching
nearly 100 %. As the number of measurements increases, the estimate of H approaches the true value but remains unsatisfactory,

Algorithm 3
Interval Estimation of Parameters and Reliability Using the Non-parametric Bootstrap.

Step 1. Obtain M bootstrap estimates of θ based on the original ADT data. The qth estimate θ̂
∗

q can be obtained as:
1.1 Get the resampled degradation data across all the stress levels. For the lth stress level, randomly sample nl items with replacement from the original items under

the lth stress level.
1.2 Acquire the estimate θ̂

∗

q of the resampled data based on Algorithm 2.
Step 2. Obtain the interval estimation of each parameter in θ at a specific (1− α) CL. For the pth parameter in θ, which is denoted as θp, its interval estimation can be
derived as:
2.1 Sort all the estimates of θp from smallest to largest based on

{
θ̂
p∗
1 , ..., θ̂

p∗
M
}
.

2.2 The interval estimation of θp at (1− α) CL is given by
(

θpα/2,θ
p
1− α/2

)
, where θpα/2 and θp1− α/2 are the (100α/2)th and [100(1− α/2)]th percentiles of the sorted

parameter estimate, respectively.
Step 3. Calculate the interval estimation of reliability at a specific (1− α) CL:
3.1 Obtain M reliability estimations according to Algorithm 1 based on M bootstrap estimates of θ, denoted as {R1,..., RM}.
3.2 Sort the reliability estimation from smallest to largest based on {R1,..., RM}.
3.3 The interval estimation of reliability at (1− α) CL is given by (Rα/2,R1− α/2), where Rα/2 and R1− α/2 are the (100α/2)th and [100(1− α/2)]th percentiles of the

sorted reliability estimation, respectively.

Table 1
Information for simulation configuration.

Content Values

Accelerated stress level (Temperature/◦C) 80, 100, 120
Normal stress level (◦C) 40
Degradation model X(s, t) = aexp(α1s∗) ⋅ tβ + σBH(t),a ∼ N

(
μa,σ2a

)
.

Acceleration model Arrhenius model
Parameter value: μa,σa,α1,β, σ, H 1e-5, 2e-6, 2.5, 1.5, 0.1, 0.1

Inspection interval (h) 100
Failure threshold 5

Table 2
Point and interval estimation results of θ in the simulation case.

Parameters Point estimations 90 % confidence interval estimations

μa 1.293e-5 (7.761e-6, 2.049e-5)
σa 2.269e-6 (1.007e-6, 3.826e-6)
α1 2.700 (2.333, 3.052)
β 1.452 (1.398, 1.513)
σ 0.081 (0.058, 0.133)
H 0.117 (0.012, 0.181)
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Fig. 1. Deterministic degradation trend, boundaries and observations: (a) 80 ◦C (b) 100 ◦C (c) 120 ◦C.

Fig. 2. Reliability of the product under normal stress level (40 ◦C).
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with a bias around 40 %. On the other hand, for the proposed statistical analysis method based on the EM algorithm, even with a
limited number of measurements, the estimated value of H remains very close to the true value, with a bias of <5 %. This dem-
onstrates the crucial role of maximizing the overall likelihood function for estimating the memory effect accurately, particularly
when measurements are scarce.

• With the increase in sample size and the number of measurements, the RE obtained by the EM algorithm decreases, demonstrating
that increasing information in ADT experiments can enhance the precision of parameter estimation effectively.

• In all combinations, the RE obtained by the EM algorithm is much better than those of the two-step MLE method, proving its
superiority in estimating the parameters of the ADT model with memory effects and UtUV.

4.3.2. Comparison of ADT models
The proposed ADT model is described by Eqs. (8), (9), and (11), which is denoted asM0. It should be noted that the proposed ADT

model has three special cases as follows:

• When the UtUV is not considered, i.e., a is a constant, it degenerates into the model in [7], which is denoted as M1.

M1 : X(s, t) = aexp(α1s∗)tβ + σBH(t). (30)

Table 3
Mean value of parameter estimations for two methods under nine combinations of sample sizes and measurements.

(N,M) Method μa σa α1 β σ H RE

(6,10) S1 1.100e-5 2.221e-6 2.469 1.5 0.157 0.001 1.779
S2 1.102e-5 1.998e-6 2.483 1.498 0.106 0.095 0.235

(6,20) S1 1.041e-5 1.938e-6 2.493 1.5 0.144 0.03 1.209
S2 1.041e-5 1.918e-6 2.493 1.5 0.103 0.095 0.168

(6,30) S1 1.027e-5 2.553e-6 2.493 1.5 0.124 0.059 0.959
S2 1.027e-5 1.925e-6 2.493 1.5 0.102 0.097 0.116

(12,10) S1 1.068e-5 2.257e-6 2.477 1.499 0.158 4.484e-5 1.790
S2 1.070e-5 2.049e-6 2.489 1.497 0.105 0.095 0.134

(12,20) S1 1.016e-5 1.848e-6 2.497 1.5 0.142 0.032 1.192
S2 1.016e-5 1.959e-6 2.497 1.5 0.102 0.098 0.074

(12,30) S1 1.016e-5 2.288e-6 2.494 1.5 0.122 0.061 0.772
S2 1.016e-5 1.968e-6 2.494 1.5 0.101 0.099 0.055

(18,10) S1 1.064e-5 2.270e-6 2.466 1.499 0.159 1.531e-8 1.802
S2 1.067e-5 2.066e-6 2.481 1.497 0.102 0.098 0.151

(18,20) S1 1.013e-5 2.007e-6 2.497 1.5 0.141 0.033 1.101
S2 1.013e-5 1.981e-6 2.497 1.5 0.101 0.099 0.049

(18,30) S1 1.003e-5 1.968e-6 2.506 1.5 0.122 0.061 0.624
S2 1.003e-5 1.960e-6 2.506 1.5 0.101 0.099 0.044

Note: S1 represents the two-step MLE method, and S2 represents the proposed statistical analysis method based on the EM algorithm.

Fig. 3. RE for parameter estimations of two statistical analysis methods under nine combinations of sample sizes and measurements.
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• When the memory effects in the degradation process are not considered, i.e.,H= 0.5, it degenerates into the model in [22], which is
denoted as M2.

M2 : X(s, t) = aexp(α1s∗)tβ + σB(t), a ∼ N
(
μa, σ2a

)
. (31)

• When the UtUV and the memory effects are both not considered, i.e., a is a constant and H = 0.5, it degenerates into the model in
[35], which is denoted as M3.

M3 : X(s, t) = aexp(α1s∗)tβ + σB(t). (32)

In order to illustrate the superiority of the proposed ADT model compared to existing ADT models, in this subsection, we set the
combination of (N,M) as (12,30) to generate ADT simulation data. Other simulation settings are the same as those in Table 1.
Considering the randomness of data generation, we simulated ADT data 1000 times for each combination and obtain the mean values
of parameter estimations. For the modelM0 andM2, the unknown parameters are estimated based on the EM algorithm. For the model
M1 andM3, the parameters are obtained by directly maximizing the log-likelihood function. Then, we calculate the maximum value of
the log-likelihood function lmax and the Akaike information criterion (AIC) for each ADT model. The AIC is expressed as [36]

AIC = − 2lmax + 2np, (33)

where np is the number of unknown parameters. The smaller the AIC, the better the model fits.
Table 4 gives the mean values of unknown parameter estimations for the four ADTmodels. From lmax and AIC values,M0 is the most

effective model for describing the ADT data, followed by model M2 and M1, and model M3 is the worst. Analyzing the reasons, the
modelM2 andM1 partially consider the UtUV and the memory effects, respectively. Therefore, they both performworse than the model
M0, which considers the UtUV and the memory effects simultaneously. Moreover, modelM1 even gets wrong degradation law, i.e., the
degradation process exhibits long-term dependency, which is due to the lack of consideration of UtUV. As for the model M3, both the
UtUV and the memory effects are not considered, which leads to the poorest fitting results.

In addition, the product reliability under normal stress level (40 ◦C) obtained by the four ADT models are compared with the real
values as illustrated in Fig. 4. From Fig. 4, the model M0 gives an accurate reliability assessment while the other three ADT models
show significant bias, proving the significance of the proposed ADT model.

5. Engineering application

In this section, we take the accelerated degradation data of a tuner to show the superiority of the proposed ADT model compared to
other ADT models.

5.1. Data description

A tuner is a long-lifespan microwave electronic assembly designed primarily for reception, filtering, amplification and gain control
of cable signals. Previous investigations into tuner failures have shown the significant impact of temperature on the degradation
process [37]. To evaluate the reliability of the tuner, a constant-stress ADT based on temperature was performed under 4 stress levels.
And, the key performance parameter, noise, was measured every ten hours by a computerized measuring system. Fig. 5 illustrates
detailed degradation data, which is sourced from Fig. 6 in [37].

5.2. Modeling and analysis

The Arrhenius model is adopted to build up the acceleration model since the applied accelerated stress is temperature. Then, stress
normalization is employed according to Eq. (8), where the normal stress level is 20 ◦C. Next, the initial values of the unknown pa-
rameters are set based on the result of the two-step MLEmethod, and the terminated threshold ε for the EM algorithm iteration is set as
0.01. Subsequently, according to Algorithm 2, we obtain the estimations of unknown parameters as shown in Table 5.

From Table 5, it can be deduced that the degradation process of the tuner exhibits short-term dependency because H<0.5. The
short-termmemory effect in the degradation process is also reported in [38]. Besides, it can be found that H is close to zero in our case.

Table 4
Mean value of parameter estimations for the four ADT models.

Model μa σa α1 β σ H lmax AIC

M0 1.003e-5 1.960e-6 2.506 1.5 0.101 0.099 811.827 ¡1611.65
M1 9.018e-6 / 2.522 1.512 0.013 0.583 465.075 − 920.15
M2 1.032e-5 1.851e-6 2.501 1.497 0.016 / 605.479 − 1200.96
M3 8.598e-6 / 2.534 1.522 0.019 / 430.897 − 853.79
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At this point, the FBM is close to a logarithmically correlated Gaussian random process [39], which has been studied and employed in
financial mathematics [40].

Then, we generate 10,000 degradation paths according to the point estimations in Table 5. The predicted deterministic degradation
trends and boundaries of performance with temperature and time are plotted in Fig. 6(a). When the critical threshold Xth is 7, the
performance margin can be calculated according to Eq. (12). Fig. 6(b) illustrates the predicted deterministic degradation trends and
boundaries of margin with temperature and time. It can be seen from the above figures that the degradation and corresponding
boundary width increase with the increase of time and temperature.

Next, according to Algorithm 1, we can deduce the reliability under different temperature and time as shown in Fig. 7(a). Specially,
the reliability of the tuner under the normal use condition (20 ◦C) with 90 % confidence interval is illustrated in Fig. 7(b). From Fig. 7
(b), we can get some valuable information for the development of maintenance and warranty strategies. For example, when the tuner is
operated for 6000 h, the lower boundary of reliability of the tuner at 90 % CL is nearly 0.99.

Fig. 4. Reliability of the product under normal stress level (40 ◦C) for the four ADT models with the real values.

Fig. 5. Accelerated degradation data of a tuner under 4 stress levels.
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5.3. Discussions

In general, the better the model fits the degradation data, the greater the potential for the model to reflect the degradation law.
Besides, it should be recalled that the ultimate goal of ADT modeling is to extrapolate the lifetime and reliability of the product under
the normal use condition, so it is crucial to ensure the accuracy of the degradation prediction for unseen stress levels. To this end, we
will discuss the fitting and extrapolation capabilities of the proposed modelM0 compared to other existing ADT models mentioned in
Section 4.3.2.

Fig. 6. Deterministic degradation trends and boundaries of tuner performance and margin with temperature and time.

Table 5
Point and interval estimation results of θ in the tuner case.

Parameters Point estimations 90 % confidence interval estimations

μa 1.073e-6 (6.623e-7, 1.856e-6)
σa 1.894e-7 (8.463e-8, 3.399e-7)
α1 4.667 (4.304, 5.021)
β 1.691 (1.642, 1.725)
σ 0.073 (0.069, 0.077)
H 2.497e-8 (1.307e-9, 0.009)

Fig. 7. Reliability of tuner under (a) different temperature and time (b) normal stress level (20 ◦C) with 90 % confidence interval.
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5.3.1. Comparison of model fitting
In this subsection, we first calculate the lmax and the AIC to compare the effectiveness of different ADT models in fitting the

degradation data. Table 6 gives the estimations of unknown parameters for the four ADT models. From the lmax and AIC values in
Table 6, M0 is the most suitable model compared to other ADT models.

In addition to evaluating the model’s goodness of fit, we are more concerned with the capacity of the model to predict actual
degradation processes, which involves deterministic degradation trend predictions and uncertainty quantification under all stress
levels. Credible reliability assessments can only be made if the model performs well in both aspects. In order to quantitatively compare
the performance of different ADT models in degradation prediction, we set up several indices formulated by Eq. (34) to assess the
precision of predicted deterministic degradation trend and uncertainty quantification [41]. Specifically, for each ADT model, we
generate 1000 degradation paths according to the estimations in Table 6 and calculate the predicted deterministic degradation trend
xprelj , predicted upper boundary x

pre− U
lj and predicted lower boundary xpre− Llj at tlij under the lth stress level. Then, the three comparison

indices can be calculated by Eq. (34), where mean
1≤i≤1000

{
xsimlij
}
, quantile
1≤i≤1000

{
xsimlij
}U

5%
and quantile

1≤i≤1000

{
xsimlij
}L

5%
denote the mean value, upper 5 %

quantile and lower 5 % quantile for the 1000 simulated degradation paths, respectively. The closer ERl is to 0, the more accurately the
model predicts the deterministic degradation trend under the lth stress level. The closer ERU

l or ER
L
l is to 0, the better the predicted

boundary can describe the uncertainty of the real data under the lth stress level. Moreover, ER, ERU, and ERL reflect the predicted
performance of an ADT model under all stress levels.

ER =
1
k
∑k

i=1
ERl,ERl =

1
nl

∑mli

j=1
ERlj,

ERlj =

⃒
⃒
⃒xprelj − xlj

⃒
⃒
⃒

xlj
, xlj =

1
nl

∑mli

j=1
xlij, xprelj = mean

1≤i≤1000

{
xsimlij
}
;

ERU
=
1
k
∑k

i=1
ERU

l ,ER
U
l =

1
nl

∑mli

j=1
ERU

lj ,

ERU
lj =

⃒
⃒
⃒xpre− Ulj − xUlj

⃒
⃒
⃒

xUlj
, xUlj = max

1≤i≤nl

{
xlij
}
, xpre− Ulj = quantile

1≤i≤1000

{
xsimlij
}U

5%
;

ERL
=
1
k
∑k

i=1
ERL

l ,ER
L
l =

1
nl

∑mli

j=1
ERL

lj,

ERL
lj =

⃒
⃒
⃒xpre− Llj − xLlj

⃒
⃒
⃒

xLlj
, xLlj = min

1≤i≤nl

{
xlij
}
, xpre− Llj = quantile

1≤i≤1000

{
xsimlij
}L

5%
.

(34)

Table 7 gives the quantitative indices for the four ADT models under all stress levels. The visualization results of the deterministic
degradation trend and the degradation boundary are shown in Figs. 8 and 9.

According to the above comparative tables and figures, compared with the other models, model M0 is superior not only in pre-
dicting the deterministic degradation trend, but also in uncertainty quantification, which demonstrates the superiority of the proposed
model. Additionally, the uncertainty quantification ofM0 andM1 is considerably superior to that of modelsM2 andM3, demonstrating
the necessity of considering memory effects in the degradation process.

5.3.2. Comparison of model extrapolation
In this subsection, we develop a cross-validation scheme [42] shown in Table 8 to explore the extrapolation capability of the four

ADT models. The results of quantitative indices for the cross-validation 1 and 2 are listed in Tables 9 and 10, respectively. The
visualization results are shown in Figs. 10 and 11, respectively.

From the above comparative tables and figures, the following results can be obtained:

• According to Tables 9 and 10, for both cross-validations, the predicted deterministic degradation trends based on M0 consistently
outperform others significantly. In terms of uncertainty quantification, the upper and lower boundary predictions based onM0 are
both the best for cross-validation 2, while the lower boundary predictions based on M0 are worse than those of M1 for cross-
validation 1. Overall, model M0 has a superior capacity for uncertainty quantification.

• From Figs. 10 and 11, for both cross-validations,M0 best describes the deterministic degradation trend and envelopes the real data,
proving the superiority of the model M0.

• By analyzing the predictions of these four ADTmodels for two cross-validations, we can deduce thatM0 is more suitable for lifetime
and reliability assessment of this tuner than other ADT models.
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6. Conclusion

This paper seeks to tackle the challenges of reliability modeling and statistical analysis of ADT with memory effects and UtUV. The
following conclusions are drawn from this paper:

• This paper proposes a comprehensive degradation model considering the influence of external stresses, memory effects and UtUV.
The memory effects are quantified by the Hurst exponent in the FBM and the UtUV is quantified in the acceleration model. Besides,
a statistical analysis method based on the EM algorithm is devised to ensure the maximization of the overall likelihood function.

• The results of the simulation case illustrate that the memory effect estimation of the proposed statistical analysis method is more
accurate than the two-step MLE method, especially when the number of measurements is small. Moreover, ignoring UtUV will lead
to highly biased memory effect estimation and reliability evaluations.

Table 6
Parameter estimations for the four ADT models in the tuner case.

Model μa σa α1 β σ H lmax AIC

M0 1.073e-6 1.894e-7 4.667 1.691 0.073 2.497e-8 579.444 ¡1146.888
M1 1.349e-6 / 4.518 1.674 0.056 0.1113 551.784 − 1093.568
M2 1.072e-6 2.113e-8 4.473 1.723 0.023 / 479.348 − 948.696
M3 1.601e-6 / 4.280 1.684 0.023 / 479.483 − 950.966

Table 7
Quantitative indices of the tuner case under all stress levels.

Model ER ERU ERL

M0 0.1335 0.9389 3.7036
M1 0.1490 1.1209 3.8215
M2 0.1429 2.3264 12.3555
M3 0.1849 2.4501 11.3810

Note: The bolded results depict the best ones.

Fig. 8. Prediction for the deterministic degradation trend under all stress levels.
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• A tuner case is utilized to demonstrate the efficacy of the proposed methodology. Findings show that the proposed ADTmodel gives
superior predictions in both deterministic degradation trends and uncertainty quantification compared to the existing ADT models,
which is more suitable for reliability assessment.

Fig. 9. Prediction for the degradation boundary at 90 % CL under all stress levels.

Table 8
Plans of cross-validation.

Projects Training data Testing data

Cross-validation 1 The data under all stress levels except the lowest stress level The data under the lowest stress level (55 ◦C)
Cross-validation 2 The data under all stress levels except the highest stress level The data under the highest stress level (85 ◦C)

Table 9
Quantitative indices of the tuner case for the cross-validation 1.

Model ER1 ERU
1 ERL

1

M0 0.2937 0.7971 3.3203
M1 0.4637 1.2940 1.3456
M2 0.4973 3.2261 27.1602
M3 0.3621 3.2290 28.5961

Note: The bolded results depict the best ones.

Table 10
Quantitative indices of the tuner case for the cross-validation 2.

Model ER4 ERU
4 ERL

4

M0 0.1249 0.4198 9.8124
M1 0.2167 0.4468 9.9591
M2 0.1617 0.8326 11.8889
M3 0.2153 0.7809 12.5949

Note: The bolded results depict the best ones.
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Beyond the work of this study, there exists additional issues that warrant investigation in future research. For example, we only
focus on modeling constant-stress ADT data in this work. Constructing an ADT model considering memory effects for the step-stress
ADT data is another interesting topic.
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Appendix

In this section, we briefly introduce the two-step MLE method [23] for parameter estimations of ADT models with UtUV. The
variables used are consistent with those in Section 3.3. In the first step, the parameters associated with the degradation process model
are estimated, denoted as θ1 = [β, σ, H]. Subsequently, the remaining parameters relevant to the acceleration model are determined in
the second step, denoted as θ2 = [μa,σa,α1].

In the first step, based on the property of FBM, for the ith item tested at lth stress level, we have

xli ∼ N
(
eliτli, σ2Σli

)
, (35)

where

eli = aliexp
(
α1s∗l

)
. (36)

Based on Eq. (35), the log-likelihood function of the ADT data can be derived as:

lnL0(θ|x) = −
1
2
∑k

l=1

∑nl

i=1

{

mliln(2π) + ln
⃒
⃒σ2Σli

⃒
⃒+

(xli − eliτli)TΣ− 1
li (xli − eliτli)

σ2

}

(37)

Then, the first partial derivatives of lnL0 with respect to eli and σ2 can be derived, respectively. By equating each derivative to zero,
we can obtain

êli =
xT
liΣ

− 1
li τli

τTliΣ
− 1
li τli

, (38)

σ̂2 =
∑k

l=1
∑nl

i=1(xli − êliτli)TΣ− 1
li (xli − êliτli)

∑k
l=1
∑nl

i=1mli
. (39)

Upon substituting Eqs. (38) and (39) into Eq. (37), the log-likelihood function depends solely on β and H. Thus, β̂ and Ĥ can be
obtained by a two-dimensional search for the maximum value of Eq. (37). Then, êli and σ̂2 can calculated by substituting β̂ and Ĥ into
Eqs. (38) and (39).

In the second step, according to Eq. (11), we can get

eli ∼ N
(
μaexp

(
α1s∗l

)
, σ2aexp

(
2α1s∗l

))
(40)

Based on Eq. (40), the log-likelihood function for eli can be derived as:

lnL0(θ|x) = −
1
2
∑k

l=1

∑nl

i=1

{

mliln(2π)+ lnσ2a +2α1s∗l +
[
eli − μaexp

(
α1s∗l

)]2

σ2aexp
(
2α1s∗l

)

}

(41)

Specifically, μ̂a and σ̂2a can be computed as:

μ̂a =
1
∑k

l=1
nl

∑k

l=1

∑nl

i=1

êli
exp
(
α1s∗l

), (42)

σ̂2a =
1
∑k

l=1
nl

∑k

l=1

∑nl

i=1

(
êli

exp
(
α1s∗l

) − μ̂a

)2

(43)

By substituting Eqs. (42) and (43) into Eq. (41), the log-likelihood function depends solely on α1.Therefore, α̂1 can be obtained by a
one-dimensional search for the maximum value of Eq. (41). Then, μ̂a and σ̂2a can calculated by substituting α̂1 into Eqs. (42) and (43).

Data availability

The code for the simulation case is publicly available at https://github.com/dirge1/FBM_ADT. Data in the engineering case will be
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made available on request.
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